The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Continuum many tent map inverse limits with homeomorphic postcritical ω-limit sets”

On indecomposability and composants of chaotic continua

Hisao Kato (1996)

Fundamenta Mathematicae

Similarity:

A homeomorphism f:X → X of a compactum X with metric d is expansive if there is c > 0 such that if x,y ∈ X and x ≠ y, then there is an integer n ∈ ℤ such that d ( f n ( x ) , f n ( y ) ) > c . A homeomorphism f: X → X is continuum-wise expansive if there is c > 0 such that if A is a nondegenerate subcontinuum of X, then there is an integer n ∈ ℤ such that d i a m i f n ( A ) > c . Clearly, every expansive homeomorphism is continuum-wise expansive, but the converse assertion is not true. In [6], we defined the notion of chaotic continua...

No arc-connected treelike continuum is the 2-to-1 image of a continuum

Jo Heath, Van C. Nall (2003)

Fundamenta Mathematicae

Similarity:

In 1940, O. G. Harrold showed that no arc can be the exactly 2-to-1 continuous image of a metric continuum, and in 1947 W. H. Gottschalk showed that no dendrite is a 2-to-1 image. In 2003 we show that no arc-connected treelike continuum is the 2-to-1 image of a continuum.

Whitney properties

J. Krasinkiewicz, Sam Nadler (1978)

Fundamenta Mathematicae

Similarity:

Irreducibility of inverse limits on intervals

David Ryden (2000)

Fundamenta Mathematicae

Similarity:

A procedure for obtaining points of irreducibility for an inverse limit on intervals is developed. In connection with this, the following are included. A semiatriodic continuum is defined to be a continuum that contains no triod with interior. Characterizations of semiatriodic and unicoherent continua are given, as well as necessary and sufficient conditions for a subcontinuum of a semiatriodic and unicoherent continuum M to lie within the interior of a proper subcontinuum of M. ...

Fully closed maps and non-metrizable higher-dimensional Anderson-Choquet continua

Jerzy Krzempek (2010)

Colloquium Mathematicae

Similarity:

Fedorchuk's fully closed (continuous) maps and resolutions are applied in constructions of non-metrizable higher-dimensional analogues of Anderson, Choquet, and Cook's rigid continua. Certain theorems on dimension-lowering maps are proved for inductive dimensions and fully closed maps from spaces that need not be hereditarily normal, and some of the examples of continua we construct have non-coinciding dimensions.

On composants of solenoids.

de Man, Ronald (1995)

Electronic Research Announcements of the American Mathematical Society [electronic only]

Similarity: