Symmetric monoidal categories model all connective spectra.
Thomason, R.W. (1995)
Theory and Applications of Categories [electronic only]
Similarity:
Thomason, R.W. (1995)
Theory and Applications of Categories [electronic only]
Similarity:
Mandell, Michael A. (2010)
Documenta Mathematica
Similarity:
Fritsch, Rudolf, Golasiński, Marek (1998)
Theory and Applications of Categories [electronic only]
Similarity:
Rosický, Jiří (2005)
Theory and Applications of Categories [electronic only]
Similarity:
Johnson, Mark W. (2001)
Theory and Applications of Categories [electronic only]
Similarity:
Jing He (2019)
Czechoslovak Mathematical Journal
Similarity:
Extriangulated categories were introduced by Nakaoka and Palu by extracting the similarities between exact categories and triangulated categories. A notion of homotopy cartesian square in an extriangulated category is defined in this article. We prove that in an extriangulated category with enough projective objects, the extension subcategory of two covariantly finite subcategories is covariantly finite. As an application, we give a simultaneous generalization of a result of X. W. Chen...
M. A. Batanin (1993)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
May, J.Peter (2003)
Theory and Applications of Categories [electronic only]
Similarity:
Timothy Porter (1976)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
D.M. Latch, R.W. Thomason, W.S. Wilson (1978/79)
Mathematische Zeitschrift
Similarity:
Everaert, T., Kieboom, R.W., Van der Linden, T. (2005)
Theory and Applications of Categories [electronic only]
Similarity:
Dundas, Bjørn Ian, Röndigs, Oliver, Østvær, Paul Arne (2003)
Documenta Mathematica
Similarity:
Extremiana Aldana, J.Ignazio, Hernández Paricio, L.Javier, Rivas Rodríguez, M.Teresa (1997)
Theory and Applications of Categories [electronic only]
Similarity: