Differentiation of implicit functions and Steinhaus' theorem in topological measure spaces
Marcin E. Kuczma (1978)
Colloquium Mathematicae
Similarity:
Marcin E. Kuczma (1978)
Colloquium Mathematicae
Similarity:
Zdena Riečanová (1969)
Matematický časopis
Similarity:
D. Butković (1979)
Publications mathématiques et informatique de Rennes
Similarity:
Riečan, B.
Similarity:
Noboru Endou (2017)
Formalized Mathematics
Similarity:
The purpose of this article is to show Fubini’s theorem on measure [16], [4], [7], [15], [18]. Some theorems have the possibility of slight generalization, but we have priority to avoid the complexity of the description. First of all, for the product measure constructed in [14], we show some theorems. Then we introduce the section which plays an important role in Fubini’s theorem, and prove the relevant proposition. Finally we show Fubini’s theorem on measure.
A. Ülger (2007)
Studia Mathematica
Similarity:
Let G be a locally compact abelian group and M(G) its measure algebra. Two measures μ and λ are said to be equivalent if there exists an invertible measure ϖ such that ϖ*μ = λ. The main result of this note is the following: A measure μ is invertible iff |μ̂| ≥ ε on Ĝ for some ε > 0 and μ is equivalent to a measure λ of the form λ = a + θ, where a ∈ L¹(G) and θ ∈ M(G) is an idempotent measure.
Finn F. Knudsen (2008)
Fundamenta Mathematicae
Similarity:
We state a certain lifting conjecture and prove it in the case of a torus. From this result we are able to construct a connected dense subset of the space of intrinsic simple topological measures on the torus, consisting of push forwards of compactly supported generalized point-measures on the universal covering space. Combining this result with an observation of Johansen and Rustad, we conclude that the space of simple topological measures on a torus is connected.
Schaerf, H.M. (1951)
Portugaliae mathematica
Similarity:
Robert Morris Pierce
Similarity:
Ricardo Faro Rivas, Juan A. Navarro, Juan Sancho (1994)
Extracta Mathematicae
Similarity:
Noboru Endou (2016)
Formalized Mathematics
Similarity:
In this article we formalize in Mizar [5] product pre-measure on product sets of measurable sets. Although there are some approaches to construct product measure [22], [6], [9], [21], [25], we start it from σ-measure because existence of σ-measure on any semialgebras has been proved in [15]. In this approach, we use some theorems for integrals.