Displaying similar documents to “N-determined p-compact groups”

N-determined 2-compact groups. II

Jesper M. Møller (2007)

Fundamenta Mathematicae

Similarity:

This is the second part of a paper about the classification of 2-compact groups. In the first part we set up a general classification procedure and applied it to the simple 2-compact groups of the A-family. In this second part we deal with the other simple Lie groups and with the exotic simple 2-compact group DI(4). We show that all simple 2-compact groups are uniquely N-determined and conclude that all connected 2-compact groups are uniquely N-determined. This means that two connected...

N-determined 2-compact groups. I

Jesper M. Møller (2007)

Fundamenta Mathematicae

Similarity:

This is the first part of a paper that classifies 2-compact groups. In this first part we formulate a general classification scheme for 2-compact groups in terms of their maximal torus normalizer pairs. We apply this general classification procedure to the simple 2-compact groups of the A-family and show that any simple 2-compact group that is locally isomorphic to PGL(n+1,ℂ) is uniquely N-determined. Thus there are no other 2-compact groups in the A-family than the ones we already know....

On generalized M * - groups.

Ikikardes, Sebahattin, Sahin, Recep (2010)

Analele Ştiinţifice ale Universităţii “Ovidius" Constanţa. Seria: Matematică

Similarity:

Finite-finitary, polycyclic-finitary and Chernikov-finitary automorphism groups

B. A. F. Wehrfritz (2015)

Colloquium Mathematicae

Similarity:

If X is a property or a class of groups, an automorphism ϕ of a group G is X-finitary if there is a normal subgroup N of G centralized by ϕ such that G/N is an X-group. Groups of such automorphisms for G a module over some ring have been very extensively studied over many years. However, for groups in general almost nothing seems to have been done. In 2009 V. V. Belyaev and D. A. Shved considered the general case for X the class of finite groups. Here we look further at the finite case...

The groups of order at most 2000.

Besche, Hans Ulrich, Eick, Bettina, O'Brien, E.A. (2001)

Electronic Research Announcements of the American Mathematical Society [electronic only]

Similarity: