A characterization of hereditarily decomposable snake-like continua
L. Mohler (1973)
Colloquium Mathematicae
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
L. Mohler (1973)
Colloquium Mathematicae
Similarity:
P. Spyrou (1992)
Matematički Vesnik
Similarity:
D. Daniel, C. Islas, R. Leonel, E. D. Tymchatyn (2015)
Colloquium Mathematicae
Similarity:
We revisit an old question of Knaster by demonstrating that each non-degenerate plane hereditarily unicoherent continuum X contains a proper, non-degenerate subcontinuum which does not separate X.
T. Maćkowiak (1977)
Fundamenta Mathematicae
Similarity:
T. Maćkowiak (1973)
Fundamenta Mathematicae
Similarity:
Janusz Charatonik (1984)
Fundamenta Mathematicae
Similarity:
Gordh, G. R., Jr.
Similarity:
S. Drobot (1971)
Applicationes Mathematicae
Similarity:
Jerzy Krzempek (2004)
Bulletin of the Polish Academy of Sciences. Mathematics
Similarity:
It is shown that a certain indecomposable chainable continuum is the domain of an exactly two-to-one continuous map. This answers a question of Jo W. Heath.
Z. Rakowski (1981)
Fundamenta Mathematicae
Similarity:
T. Maćkowiak (1977)
Fundamenta Mathematicae
Similarity:
Włodzimierz J. Charatonik, Alejandro Illanes, Verónica Martínez-de-la-Vega (2013)
Colloquium Mathematicae
Similarity:
We show that there exists a C*-smooth continuum X such that for every continuum Y the induced map C(f) is not open, where f: X × Y → X is the projection. This answers a question of Charatonik (2000).