A characterization of hereditarily decomposable snake-like continua
L. Mohler (1973)
Colloquium Mathematicae
Similarity:
L. Mohler (1973)
Colloquium Mathematicae
Similarity:
P. Spyrou (1992)
Matematički Vesnik
Similarity:
D. Daniel, C. Islas, R. Leonel, E. D. Tymchatyn (2015)
Colloquium Mathematicae
Similarity:
We revisit an old question of Knaster by demonstrating that each non-degenerate plane hereditarily unicoherent continuum X contains a proper, non-degenerate subcontinuum which does not separate X.
T. Maćkowiak (1977)
Fundamenta Mathematicae
Similarity:
T. Maćkowiak (1973)
Fundamenta Mathematicae
Similarity:
Janusz Charatonik (1984)
Fundamenta Mathematicae
Similarity:
Gordh, G. R., Jr.
Similarity:
S. Drobot (1971)
Applicationes Mathematicae
Similarity:
Jerzy Krzempek (2004)
Bulletin of the Polish Academy of Sciences. Mathematics
Similarity:
It is shown that a certain indecomposable chainable continuum is the domain of an exactly two-to-one continuous map. This answers a question of Jo W. Heath.
Z. Rakowski (1981)
Fundamenta Mathematicae
Similarity:
T. Maćkowiak (1977)
Fundamenta Mathematicae
Similarity:
Włodzimierz J. Charatonik, Alejandro Illanes, Verónica Martínez-de-la-Vega (2013)
Colloquium Mathematicae
Similarity:
We show that there exists a C*-smooth continuum X such that for every continuum Y the induced map C(f) is not open, where f: X × Y → X is the projection. This answers a question of Charatonik (2000).