Displaying similar documents to “Quasi-linear maps”

Linear maps preserving quasi-commutativity

Heydar Radjavi, Peter Šemrl (2008)

Studia Mathematica

Similarity:

Let X and Y be Banach spaces and ℬ(X) and ℬ(Y) the algebras of all bounded linear operators on X and Y, respectively. We say that A,B ∈ ℬ(X) quasi-commute if there exists a nonzero scalar ω such that AB = ωBA. We characterize bijective linear maps ϕ : ℬ(X) → ℬ(Y) preserving quasi-commutativity. In fact, such a characterization can be proved for much more general algebras. In the finite-dimensional case the same result can be obtained without the bijectivity assumption.

Versatile asymmetrical tight extensions

Olivier Olela Otafudu, Zechariah Mushaandja (2017)

Topological Algebra and its Applications

Similarity:

We show that the image of a q-hyperconvex quasi-metric space under a retraction is q-hyperconvex. Furthermore, we establish that quasi-tightness and quasi-essentiality of an extension of a T0-quasi-metric space are equivalent.

On Quasi-Normality of Two-Sided Multiplication

Amouch, M. (2009)

Serdica Mathematical Journal

Similarity:

2000 Mathematics Subject Classification: 47B47, 47B10, 47A30. In this note, we characterize quasi-normality of two-sided multiplication, restricted to a norm ideal and we extend this result, to an important class which contains all quasi-normal operators. Also we give some applications of this result.

Some seminorms on quasi *-algebras

Camillo Trapani (2003)

Studia Mathematica

Similarity:

Different types of seminorms on a quasi *-algebra (𝔄,𝔄₀) are constructed from a suitable family ℱ of sesquilinear forms on 𝔄. Two particular classes, extended C*-seminorms and CQ*-seminorms, are studied in some detail. A necessary and sufficient condition for the admissibility of a sesquilinear form in terms of extended C*-seminorms on (𝔄,𝔄₀) is given.