The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Typical multifractal box dimensions of measures”

The multifractal box dimensions of typical measures

Frédéric Bayart (2012)

Fundamenta Mathematicae

Similarity:

We compute the typical (in the sense of Baire’s category theorem) multifractal box dimensions of measures on a compact subset of d . Our results are new even in the context of box dimensions of measures.

On the closure of Baire classes under transfinite convergences

Tamás Mátrai (2004)

Fundamenta Mathematicae

Similarity:

Let X be a Polish space and Y be a separable metric space. For a fixed ξ < ω₁, consider a family f α : X Y ( α < ω ) of Baire-ξ functions. Answering a question of Tomasz Natkaniec, we show that if for a function f: X → Y, the set α < ω : f α ( x ) f ( x ) is finite for every x ∈ X, then f itself is necessarily Baire-ξ. The proof is based on a characterization of Σ η sets which can be interesting in its own right.

Functions of Baire class one

Denny H. Leung, Wee-Kee Tang (2003)

Fundamenta Mathematicae

Similarity:

Let K be a compact metric space. A real-valued function on K is said to be of Baire class one (Baire-1) if it is the pointwise limit of a sequence of continuous functions. We study two well known ordinal indices of Baire-1 functions, the oscillation index β and the convergence index γ. It is shown that these two indices are fully compatible in the following sense: a Baire-1 function f satisfies β ( f ) ω ξ · ω ξ for some countable ordinals ξ₁ and ξ₂ if and only if there exists a sequence (fₙ) of Baire-1...

Extension of functions with small oscillation

Denny H. Leung, Wee-Kee Tang (2006)

Fundamenta Mathematicae

Similarity:

A classical theorem of Kuratowski says that every Baire one function on a G δ subspace of a Polish (= separable completely metrizable) space X can be extended to a Baire one function on X. Kechris and Louveau introduced a finer gradation of Baire one functions into small Baire classes. A Baire one function f is assigned into a class in this hierarchy depending on its oscillation index β(f). We prove a refinement of Kuratowski’s theorem: if Y is a subspace of a metric space X and f is a...

Rudin-like sets and hereditary families of compact sets

Étienne Matheron, Miroslav Zelený (2005)

Fundamenta Mathematicae

Similarity:

We show that a comeager Π₁¹ hereditary family of compact sets must have a dense G δ subfamily which is also hereditary. Using this, we prove an “abstract” result which implies the existence of independent ℳ ₀-sets, the meagerness of ₀-sets with the property of Baire, and generalizations of some classical results of Mycielski. Finally, we also give some natural examples of true F σ δ sets.

On the k -Baire property

Alessandro Fedeli (1993)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In this note we show the following theorem: “Let X be an almost k -discrete space, where k is a regular cardinal. Then X is k + -Baire iff it is a k -Baire space and every point- k open cover 𝒰 of X such that card ( 𝒰 ) k is locally- k at a dense set of points.” For k = 0 we obtain a well-known characterization of Baire spaces. The case k = 1 is also discussed.

Higher order local dimensions and Baire category

Lars Olsen (2011)

Studia Mathematica

Similarity:

Let X be a complete metric space and write (X) for the family of all Borel probability measures on X. The local dimension d i m l o c ( μ ; x ) of a measure μ ∈ (X) at a point x ∈ X is defined by d i m l o c ( μ ; x ) = l i m r 0 ( l o g μ ( B ( x , r ) ) ) / ( l o g r ) whenever the limit exists, and plays a fundamental role in multifractal analysis. It is known that if a measure μ ∈ (X) satisfies a few general conditions, then the local dimension of μ exists and is equal to a constant for μ-a.a. x ∈ X. In view of this, it is natural to expect that for a fixed x ∈ X, the local...

Insertion of a Contra-Baire- 1 (Baire- . 5 ) Function

Majid Mirmiran (2019)

Communications in Mathematics

Similarity:

Necessary and sufficient conditions in terms of lower cut sets are given for the insertion of a Baire- . 5 function between two comparable real-valued functions on the topological spaces that F σ -kernel of sets are F σ -sets.

On Borel reducibility in generalized Baire space

Sy-David Friedman, Tapani Hyttinen, Vadim Kulikov (2015)

Fundamenta Mathematicae

Similarity:

We study the Borel reducibility of Borel equivalence relations on the generalized Baire space κ κ for an uncountable κ with κ < κ = κ . The theory looks quite different from its classical counterpart where κ = ω, although some basic theorems do generalize.

Descriptive properties of elements of biduals of Banach spaces

Pavel Ludvík, Jiří Spurný (2012)

Studia Mathematica

Similarity:

If E is a Banach space, any element x** in its bidual E** is an affine function on the dual unit ball B E * that might possess a variety of descriptive properties with respect to the weak* topology. We prove several results showing that descriptive properties of x** are quite often determined by the behaviour of x** on the set of extreme points of B E * , generalizing thus results of J. Saint Raymond and F. Jellett. We also prove a result on the relation between Baire classes and intrinsic Baire...

Distances to spaces of affine Baire-one functions

Jiří Spurný (2010)

Studia Mathematica

Similarity:

Let E be a Banach space and let ( B E * ) and ( B E * ) denote the space of all Baire-one and affine Baire-one functions on the dual unit ball B E * , respectively. We show that there exists a separable L₁-predual E such that there is no quantitative relation between d i s t ( f , ( B E * ) ) and d i s t ( f , ( B E * ) ) , where f is an affine function on B E * . If the Banach space E satisfies some additional assumption, we prove the existence of some such dependence.

A model-theoretic Baire category theorem for simple theories and its applications

Ziv Shami (2013)

Fundamenta Mathematicae

Similarity:

We prove a model-theoretic Baire category theorem for τ ̃ l o w f -sets in a countable simple theory in which the extension property is first-order and show some of its applications. We also prove a trichotomy for minimal types in countable nfcp theories: either every type that is internal in a minimal type is essentially 1-based by means of the forking topologies, or T interprets an infinite definable 1-based group of finite D-rank or T interprets a strongly minimal formula.

Operators on the stopping time space

Dimitris Apatsidis (2015)

Studia Mathematica

Similarity:

Let S¹ be the stopping time space and ℬ₁(S¹) be the Baire-1 elements of the second dual of S¹. To each element x** in ℬ₁(S¹) we associate a positive Borel measure μ x * * on the Cantor set. We use the measures μ x * * : x * * ( S ¹ ) to characterize the operators T: X → S¹, defined on a space X with an unconditional basis, which preserve a copy of S¹. In particular, if X = S¹, we show that T preserves a copy of S¹ if and only if μ T * * ( x * * ) : x * * ( S ¹ ) is non-separable as a subset of ( 2 ) .

Consistency of the Silver dichotomy in generalised Baire space

Sy-David Friedman (2014)

Fundamenta Mathematicae

Similarity:

Silver’s fundamental dichotomy in the classical theory of Borel reducibility states that any Borel (or even co-analytic) equivalence relation with uncountably many classes has a perfect set of classes. The natural generalisation of this to the generalised Baire space κ κ for a regular uncountable κ fails in Gödel’s L, even for κ-Borel equivalence relations. We show here that Silver’s dichotomy for κ-Borel equivalence relations in κ κ for uncountable regular κ is however consistent (with...

Generic power series on subsets of the unit disk

Balázs Maga, Péter Maga (2022)

Czechoslovak Mathematical Journal

Similarity:

We examine the boundary behaviour of the generic power series f with coefficients chosen from a fixed bounded set Λ in the sense of Baire category. Notably, we prove that for any open subset U of the unit disk D with a nonreal boundary point on the unit circle, f ( U ) is a dense set of . As it is demonstrated, this conclusion does not necessarily hold for arbitrary open sets accumulating to the unit circle. To complement these results, a characterization of coefficient sets having this property...

A remark on functions continuous on all lines

Luděk Zajíček (2019)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We prove that each linearly continuous function f on n (i.e., each function continuous on all lines) belongs to the first Baire class, which answers a problem formulated by K. C. Ciesielski and D. Miller (2016). The same result holds also for f on an arbitrary Banach space X , if f has moreover the Baire property. We also prove (extending a known finite-dimensional result) that such f on a separable X is continuous at all points outside a first category set which is also null in any usual...

On the Dirichlet problem for functions of the first Baire class

Jiří Spurný (2001)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let be a simplicial function space on a metric compact space X . Then the Choquet boundary Ch X of is an F σ -set if and only if given any bounded Baire-one function f on Ch X there is an -affine bounded Baire-one function h on X such that h = f on Ch X . This theorem yields an answer to a problem of F. Jellett from [8] in the case of a metrizable set X .