The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Recognizing dualizing complexes”

Some properties of graded comultiplication modules

Khaldoun Al-Zoubi, Amani Al-Qderat (2017)

Open Mathematics

Similarity:

Let G be a group with identity e. Let R be a G-graded commutative ring and M a graded R-module. In this paper we will obtain some results concerning the graded comultiplication modules over a commutative graded ring.

On the structure of the canonical model of the Rees algebra and the associated graded ring of an ideal.

Santiago Zarzuela (1992)

Publicacions Matemàtiques

Similarity:

In this note we give a description of a morphism related to the structure of the canonical model of the Rees algebra R(I) of an ideal I in a local ring. As an application we obtain Ikeda's criteria for the Gorensteinness of R(I) and a result of Herzog-Simis-Vasconcelos characterizing when the canonical module of R(I) has the expected form.

On graded P-compactly packed modules

Khaldoun Al-Zoubi, Imad Jaradat, Mohammed Al-Dolat (2015)

Open Mathematics

Similarity:

Let G be a group with identity e. Let R be a G-graded commutative ring and M a graded R-module. In this paper, we introduce the concept of graded P-compactly packed modules and we give a number of results concerning such graded modules. In fact, our objective is to investigate graded P-compactly packed modules and examine in particular when graded R-modules are P-compactly packed. Finally, we introduce the concept of graded finitely P-compactly packed modules and give a number of its...

Weak dimension of group-graded rings.

Angel del Río (1990)

Publicacions Matemàtiques

Similarity:

We study the weak dimension of a group-graded ring using methods developed in [B1], [Q] and [R]. We prove that if R is a G-graded ring with G locally finite and the order of every subgroup of G is invertible in R, then the graded weak dimension of R is equal to the ungraded one.