Displaying similar documents to “Extended Ramsey theory for words representing rationals”

On the continuity set of an Omega rational function

Olivier Carton, Olivier Finkel, Pierre Simonnet (2008)

RAIRO - Theoretical Informatics and Applications

Similarity:

In this paper, we study the continuity of rational functions realized by Büchi finite state transducers. It has been shown by Prieur that it can be decided whether such a function is continuous. We prove here that surprisingly, it cannot be decided whether such a function  has at least one point of continuity and that its continuity set cannot be computed. In the case of a synchronous rational function, we show that its continuity set is rational and that it can be computed....

Iteration of rational transductions

Alain Terlutte, David Simplot (2010)

RAIRO - Theoretical Informatics and Applications

Similarity:

The purpose of this paper is to show connections between iterated length-preserving rational transductions and linear space computations. Hence, we study the smallest family of transductions containing length-preserving rational transductions and closed under union, composition and iteration. We give several characterizations of this class using restricted classes of length-preserving rational transductions, by showing the connections with "context-sensitive transductions" and transductions...

Characterization of linear rational preference structures.

Jacinto González Pachón, Sixto Ríos-Insua (1992)

Extracta Mathematicae

Similarity:

We consider the multiobjective decision making problem. The decision maker's (DM) impossibility to take consciously a preference or indifference attitude with regard to a pair of alternatives leads us to what we have called doubt attitude. So, the doubt may be revealed in a conscient way by the DM. However, it may appear in an inconscient way, revealing judgements about her/his attitudes which do not follow a certain logical reasoning. In this paper, doubt will be considered...

Undecidability of topological and arithmetical properties of infinitary rational relations

Olivier Finkel (2003)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

Similarity:

We prove that for every countable ordinal α one cannot decide whether a given infinitary rational relation is in the Borel class Σ α 0 (respectively Π α 0 ). Furthermore one cannot decide whether a given infinitary rational relation is a Borel set or a Σ 1 1 -complete set. We prove some recursive analogues to these properties. In particular one cannot decide whether an infinitary rational relation is an arithmetical set. We then deduce from the proof of these results some other ones, like: one cannot...