The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Openly generated Boolean algebras and the Fodor-type reflection principle”

The elementary-equivalence classes of clopen algebras of P-spaces

Brian Wynne (2008)

Fundamenta Mathematicae

Similarity:

Two Boolean algebras are elementarily equivalent if and only if they satisfy the same first-order statements in the language of Boolean algebras. We prove that every Boolean algebra is elementarily equivalent to the algebra of clopen subsets of a normal P-space.

On Marczewski-Burstin representable algebras

Marek Balcerzak, Artur Bartoszewicz, Piotr Koszmider (2004)

Colloquium Mathematicae

Similarity:

We construct algebras of sets which are not MB-representable. The existence of such algebras was previously known under additional set-theoretic assumptions. On the other hand, we prove that every Boolean algebra is isomorphic to an MB-representable algebra of sets.

On the injectivity of Boolean algebras

Bernhard Banaschewski (1993)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

The functor taking global elements of Boolean algebras in the topos 𝐒𝐡 𝔅 of sheaves on a complete Boolean algebra 𝔅 is shown to preserve and reflect injectivity as well as completeness. This is then used to derive a result of Bell on the Boolean Ultrafilter Theorem in 𝔅 -valued set theory and to prove that (i) the category of complete Boolean algebras and complete homomorphisms has no non-trivial injectives, and (ii) the category of frames has no absolute retracts.