Displaying similar documents to “Dimension of countable intersections of some sets arising in expansions in non-integer bases”

M-bases in spaces of continuous functions on ordinals

Ondrej F. K. Kalenda (2002)

Colloquium Mathematicae

Similarity:

We prove, among other things, that the space C[0,ω₂] has no countably norming Markushevich basis. This answers a question asked by G. Alexandrov and A. Plichko.

Transfinite inductions producing coanalytic sets

Zoltán Vidnyánszky (2014)

Fundamenta Mathematicae

Similarity:

A. Miller proved the consistent existence of a coanalytic two-point set, Hamel basis and MAD family. In these cases the classical transfinite induction can be modified to produce a coanalytic set. We generalize his result formulating a condition which can be easily applied in such situations. We reprove the classical results and as a new application we show that consistently there exists an uncountable coanalytic subset of the plane that intersects every C¹ curve in a countable set. ...

Aspects of unconditionality of bases in spaces of compact operators

James R. Holub (1998)

Annales Polonici Mathematici

Similarity:

E. Tutaj has introduced classes of Schauder bases termed "unconditional-like" (UL) and "unconditional-like*" (UL*) whose intersection is the class of unconditional bases. In view of this association with unconditional bases, it is interesting to note that there exist Banach spaces which have no unconditional basis and yet have a basis of one of these two types (e.g., the space 𝓞[0,1]). In the same spirit, we show in this paper that the space of all compact operators on a reflexive Banach...

Generalized golden ratios of ternary alphabets

Vilmos Komornik, Anna Chiara Lai, Marco Pedicini (2011)

Journal of the European Mathematical Society

Similarity:

Expansions in noninteger bases often appear in number theory and probability theory, and they are closely connected to ergodic theory, measure theory and topology. For two-letter alphabets the golden ratio plays a special role: in smaller bases only trivial expansions are unique, whereas in greater bases there exist nontrivial unique expansions. In this paper we determine the corresponding critical bases for all three-letter alphabets and we establish the fractal nature of these bases...

First countable spaces without point-countable π-bases

István Juhász, Lajos Soukup, Zoltán Szentmiklóssy (2007)

Fundamenta Mathematicae

Similarity:

We answer several questions of V. Tkachuk [Fund. Math. 186 (2005)] by showing that ∙ there is a ZFC example of a first countable, 0-dimensional Hausdorff space with no point-countable π-base (in fact, the minimum order of a π-base of the space can be made arbitrarily large); ∙ if there is a κ-Suslin line then there is a first countable GO-space of cardinality κ⁺ in which the order of any π-base is at least κ; ∙ it is consistent to have a...