On the Diophantine equation F(x)=G(y)
Sz. Tengely (2003)
Acta Arithmetica
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Sz. Tengely (2003)
Acta Arithmetica
Similarity:
Susil Kumar Jena (2014)
Bulletin of the Polish Academy of Sciences. Mathematics
Similarity:
The Diophantine equation A² + nB⁴ = C³ has infinitely many integral solutions A, B, C for any fixed integer n. The case n = 0 is trivial. By using a new polynomial identity we generate these solutions, and then give conditions when the solutions are pairwise co-prime.
Franušić, Zrinka (2010)
Journal of Integer Sequences [electronic only]
Similarity:
Csaba Rakaczki (2003)
Acta Arithmetica
Similarity:
M. Filaseta, F. Luca, P. Stănică, R. G. Underwood (2007)
Acta Arithmetica
Similarity:
H. G. Grundman, L. L. Hall (2004)
Acta Arithmetica
Similarity:
Ernst, Bruno (1996)
General Mathematics
Similarity:
H. Kleiman (1976)
Journal für die reine und angewandte Mathematik
Similarity:
Yang Hai, P. G. Walsh (2010)
Acta Arithmetica
Similarity:
Alan Filipin (2009)
Acta Arithmetica
Similarity:
Umberto Zannier (2003)
Acta Arithmetica
Similarity:
Shin-ichi Katayama, Claude Levesque (2003)
Acta Arithmetica
Similarity:
Muriefah, Fadwa S.Abu, Bugeaud, Yann (2006)
Revista Colombiana de Matemáticas
Similarity:
W. J. Ellison (1970-1971)
Séminaire de théorie des nombres de Bordeaux
Similarity:
Jianhua Chen (2001)
Acta Arithmetica
Similarity:
A. Berczes, K. Gyory (2002)
Acta Arithmetica
Similarity:
Pingzhi Yuan, Jiagui Luo (2010)
Acta Arithmetica
Similarity:
Manisha Kulkarni, B. Sury (2005)
Acta Arithmetica
Similarity:
S. Akhtari, A. Togbé, P. G. Walsh (2009)
Acta Arithmetica
Similarity:
Yong Zhang (2016)
Colloquium Mathematicae
Similarity:
Let f ∈ ℚ [X] be a polynomial without multiple roots and with deg(f) ≥ 2. We give conditions for f(X) = AX² + BX + C such that the Diophantine equation f(x)f(y) = f(z)² has infinitely many nontrivial integer solutions and prove that this equation has a rational parametric solution for infinitely many irreducible cubic polynomials. Moreover, we consider f(x)f(y) = f(z)² for quartic polynomials.