The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Diophantine undecidability for addition and divisibility in polynomial rings”

Parametric Solutions of the Diophantine Equation A² + nB⁴ = C³

Susil Kumar Jena (2014)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

The Diophantine equation A² + nB⁴ = C³ has infinitely many integral solutions A, B, C for any fixed integer n. The case n = 0 is trivial. By using a new polynomial identity we generate these solutions, and then give conditions when the solutions are pairwise co-prime.

Some observations on the Diophantine equation f(x)f(y) = f(z)²

Yong Zhang (2016)

Colloquium Mathematicae

Similarity:

Let f ∈ ℚ [X] be a polynomial without multiple roots and with deg(f) ≥ 2. We give conditions for f(X) = AX² + BX + C such that the Diophantine equation f(x)f(y) = f(z)² has infinitely many nontrivial integer solutions and prove that this equation has a rational parametric solution for infinitely many irreducible cubic polynomials. Moreover, we consider f(x)f(y) = f(z)² for quartic polynomials.