An elementary proof of Komlós-Révész theorem in Hilbert spaces.
Guessous, Mohamed (1997)
Journal of Convex Analysis
Similarity:
Guessous, Mohamed (1997)
Journal of Convex Analysis
Similarity:
Lothar Göttsche (1990)
Manuscripta mathematica
Similarity:
E. Odell, Th. Schlumprecht (1993)
Geometric and functional analysis
Similarity:
Petruševski, Ljiljana (1989)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
Pierre Dèbes (1996)
Manuscripta mathematica
Similarity:
B. E. Rhoades (1975)
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti
Similarity:
G. H. Constantin ha definito una classe di operatori di Cesàro-Hilbert-Schmidt. In questa Nota l'Autore trova la corrispondente proprietà per una più generale classe di operatori di Hilbert-Schmidt (G. H. S.).
Petruševski, Ljiljana (1989)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
Eberhard Gerlach (1971)
Annales de l'institut Fourier
Similarity:
A general theorem on Hilbert subspaces of dually nuclear spaces is proved, from which all previous results of K. Maurin and the writer on regularity of generalized eigenfunctions follow as simple corollaries. In addition some supplements to L. Schwartz’s work on Hilbert subspaces in spaces of smooth functions are given.
West, J. E.
Similarity:
C. R. Guilbault (2001)
Fundamenta Mathematicae
Similarity:
We construct a locally compact 2-dimensional polyhedron X which does not admit a 𝒵-compactification, but which becomes 𝒵-compactifiable upon crossing with the Hilbert cube. This answers a long-standing question posed by Chapman and Siebenmann in 1976 and repeated in the 1976, 1979 and 1990 versions of Open Problems in Infinite-Dimensional Topology. Our solution corrects an error in the 1990 problem list.
Minghua Lin (2013)
Studia Mathematica
Similarity:
Let A, B be positive operators on a Hilbert space with 0 < m ≤ A, B ≤ M. Then for every unital positive linear map Φ, Φ²((A + B)/2) ≤ K²(h)Φ²(A ♯ B), and Φ²((A+B)/2) ≤ K²(h)(Φ(A) ♯ Φ(B))², where A ♯ B is the geometric mean and K(h) = (h+1)²/(4h) with h = M/m.
Wiesław Aleksander Dudek (1999)
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
Similarity: