The Fourier transform of distributions and the exchange formula
B. Fisher, Li Chen Kuan, A. Takači (1988)
Matematički Vesnik
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
B. Fisher, Li Chen Kuan, A. Takači (1988)
Matematički Vesnik
Similarity:
Marko Nedeljkov, Stevan Pilipović (1992)
Publications de l'Institut Mathématique
Similarity:
Dragu Atanasiu, Piotr Mikusiński (2007)
Colloquium Mathematicae
Similarity:
We introduce some spaces of generalized functions that are defined as generalized quotients and Boehmians. The spaces provide simple and natural frameworks for extensions of the Fourier transform.
Robert Kaufman (1990)
Colloquium Mathematicae
Similarity:
Nguyen Xuan Thao (2010)
Mathematical Problems in Engineering
Similarity:
Nedeljkov, M., Pilipović, S. (1992)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
E. Gesztelyi (1970)
Annales Polonici Mathematici
Similarity:
Alexander L. Koldobskii (1991)
Mathematische Annalen
Similarity:
Kilicman, Adem, Kamel Ariffin, Muhammad Rezal (2002)
Bulletin of the Malaysian Mathematical Sciences Society. Second Series
Similarity:
Yakubovich, S.B., Kalla, Shyam L. (1993)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Faragallah, M., Elshobaky, E. (2002)
Southwest Journal of Pure and Applied Mathematics [electronic only]
Similarity:
Jan Mikusiński (1985)
Annales Polonici Mathematici
Similarity:
Paul L. Butzer, Stefan Jansche (1997)
The journal of Fourier analysis and applications [[Elektronische Ressource]]
Similarity:
Colin C. Graham (1975)
Colloquium Mathematicae
Similarity:
Nedeljkov, M., Pilipović, S. (1992)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
Maria E. Pliś (1998)
Annales Polonici Mathematici
Similarity:
A formal solution of a nonlinear equation P(D)u = g(u) in 2 variables is constructed using the Laplace transformation and a convolution equation. We assume some conditions on the characteristic set Char P.