Displaying similar documents to “Point derivations on the L¹-algebra of polynomial hypergroups”

Amenability and weak amenability of l¹-algebras of polynomial hypergroups

Rupert Lasser (2007)

Studia Mathematica

Similarity:

We investigate amenability and weak amenability of the l¹-algebra of polynomial hypergroups. We derive conditions for (weak) amenability adapted to polynomial hypergroups and show that these conditions are often not satisfied. However, we prove amenability for the hypergroup induced by the Chebyshev polynomials of the first kind.

Compactness of derivations from commutative Banach algebras

Matthew J. Heath (2010)

Banach Center Publications

Similarity:

We consider the compactness of derivations from commutative Banach algebras into their dual modules. We show that if there are no compact derivations from a commutative Banach algebra, A, into its dual module, then there are no compact derivations from A into any symmetric A-bimodule; we also prove analogous results for weakly compact derivations and for bounded derivations of finite rank. We then characterise the compact derivations from the convolution algebra ℓ¹(ℤ₊) to its dual. Finally,...

On derivations of quantales

Qimei Xiao, Wenjun Liu (2016)

Open Mathematics

Similarity:

A quantale is a complete lattice equipped with an associative binary multiplication distributing over arbitrary joins. We define the notions of right (left, two) sided derivation and idempotent derivation and investigate the properties of them. It’s well known that quantic nucleus and quantic conucleus play important roles in a quantale. In this paper, the relationships between derivation and quantic nucleus (conucleus) are studied via introducing the concept of pre-derivation. ...