The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Chen's inequality in the Lagrangian case”

On an inequality of Oprea for Lagrangian submanifolds

Franki Dillen, Johan Fastenakels (2009)

Open Mathematics

Similarity:

We show that a Lagrangian submanifold of a complex space form attaining equality in the inequality obtained by Oprea in [8], must be totally geodesic.

Warped product submanifolds of Kaehler manifolds with a slant factor

Bayram Sahin (2009)

Annales Polonici Mathematici

Similarity:

Recently, we showed that there exist no warped product semi-slant submanifolds in Kaehler manifolds. On the other hand, Carriazo introduced anti-slant submanifolds as a particular class of bi-slant submanifolds. In this paper, we study such submanifolds in detail and show that they are useful to define a new kind of warped product submanifolds of Kaehler manifolds. In this direction, we obtain the existence of warped product hemi-slant (anti-slant) submanifolds with examples. We give...

An improved Chen-Ricci inequality for special slant submanifolds in Kenmotsu space forms

Simona Costache, Iuliana Zamfir (2014)

Annales Polonici Mathematici

Similarity:

B. Y. Chen [Arch. Math. (Basel) 74 (2000), 154-160] proved a geometrical inequality for Lagrangian submanifolds in complex space forms in terms of the Ricci curvature and the squared mean curvature. Recently, this Chen-Ricci inequality was improved in [Int. Electron. J. Geom. 2 (2009), 39-45]. On the other hand, K. Arslan et al. [Int. J. Math. Math. Sci. 29 (2002), 719-726] established a Chen-Ricci inequality for submanifolds, in particular in contact slant submanifolds,...

Slant submanifolds in cosymplectic manifolds

Ram Shankar Gupta, S. M. Khursheed Haider, A. Sharfuddin (2006)

Colloquium Mathematicae

Similarity:

We give some examples of slant submanifolds of cosymplectic manifolds. Also, we study some special slant submanifolds, called austere submanifolds, and establish a relation between minimal and anti-invariant submanifolds which is based on properties of the second fundamental form. Moreover, we give an example to illustrate our result.