The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Some observations on the Diophantine equation f(x)f(y) = f(z)²”

Parametric Solutions of the Diophantine Equation A² + nB⁴ = C³

Susil Kumar Jena (2014)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

The Diophantine equation A² + nB⁴ = C³ has infinitely many integral solutions A, B, C for any fixed integer n. The case n = 0 is trivial. By using a new polynomial identity we generate these solutions, and then give conditions when the solutions are pairwise co-prime.

On the diophantine equation f(x)f(y) = f(z)²

Maciej Ulas (2007)

Colloquium Mathematicae

Similarity:

Let f ∈ ℚ [X] and deg f ≤ 3. We prove that if deg f = 2, then the diophantine equation f(x)f(y) = f(z)² has infinitely many nontrivial solutions in ℚ (t). In the case when deg f = 3 and f(X) = X(X²+aX+b) we show that for all but finitely many a,b ∈ ℤ satisfying ab ≠ 0 and additionally, if p|a, then p²∤b, the equation f(x)f(y) = f(z)² has infinitely many nontrivial solutions in rationals.