Displaying similar documents to “Weak compactness and Orlicz spaces”

Maximal function in Beurling-Orlicz and central Morrey-Orlicz spaces

Lech Maligranda, Katsuo Matsuoka (2015)

Colloquium Mathematicae

Similarity:

We define Beurling-Orlicz spaces, weak Beurling-Orlicz spaces, Herz-Orlicz spaces, weak Herz-Orlicz spaces, central Morrey-Orlicz spaces and weak central Morrey-Orlicz spaces. Moreover, the strong-type and weak-type estimates of the Hardy-Littlewood maximal function on these spaces are investigated.

On property (β) of Rolewicz in Musielak-Orlicz sequence spaces equipped with the Orlicz norm

Paweł Kolwicz (2005)

Banach Center Publications

Similarity:

We prove that the Musielak-Orlicz sequence space with the Orlicz norm has property (β) iff it is reflexive. It is a generalization and essential extension of the respective results from [3] and [5]. Moreover, taking an arbitrary Musielak-Orlicz function instead of an N-function we develop new methods and techniques of proof and we consider a wider class of spaces than in [3] and [5].

Roughness of two norms on Musielak-Orlicz function spaces

Jimin Zheng, Lihuan Sun, Yun'an Cui (2008)

Banach Center Publications

Similarity:

In this paper, the criteria of strong roughness, roughness and pointwise roughness of Orlicz norm and Luxemburg norm on Musielak-Orlicz function spaces are obtained.

Jung constants of Orlicz sequence spaces

Tao Zhang (2003)

Annales Polonici Mathematici

Similarity:

Estimation of the Jung constants of Orlicz sequence spaces equipped with either the Luxemburg norm or the Orlicz norm is given. The exact values of the Jung constants of a class of reflexive Orlicz sequence spaces are found by using new quantitative indices for 𝓝-functions.

Mazur-Orlicz equality

Fon-Che Liu (2008)

Studia Mathematica

Similarity:

A remarkable theorem of Mazur and Orlicz which generalizes the Hahn-Banach theorem is here put in a convenient form through an equality which will be referred to as the Mazur-Orlicz equality. Applications of the Mazur-Orlicz equality to lower barycenters for means, separation principles, Lax-Milgram lemma in reflexive Banach spaces, and monotone variational inequalities are provided.

Rademacher series from Orlicz to the present day

N. J. Kalton (2004)

Banach Center Publications

Similarity:

We survey some questions on Rademacher series in both Banach and quasi-Banach spaces which have been the subject of extensive research from the time of Orlicz to the present day.