Some reults on fundamental units in cubic fields.
H.C. Williams (1976)
Journal für die reine und angewandte Mathematik
Similarity:
H.C. Williams (1976)
Journal für die reine und angewandte Mathematik
Similarity:
Francisca Cánovas Orvay (1991)
Extracta Mathematicae
Similarity:
Jun Ho Lee, Stéphane R. Louboutin (2014)
Acta Arithmetica
Similarity:
Let ϵ be a totally real cubic algebraic unit. Assume that the cubic number field ℚ(ϵ) is Galois. Let ϵ, ϵ' and ϵ'' be the three real conjugates of ϵ. We tackle the problem of whether {ϵ,ϵ'} is a system of fundamental units of the cubic order ℤ[ϵ,ϵ',ϵ'']. Given two units of a totally real cubic order, we explain how one can prove that they form a system of fundamental units of this order. Several explicit families of totally real cubic orders defined by parametrized families of cubic...
Emery Thomas (1979)
Journal für die reine und angewandte Mathematik
Similarity:
Scarowsky, Manny, Boyarsky, Abraham (1986)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Franz Lemmermeyer, Attila Pethö (1995)
Manuscripta mathematica
Similarity:
Andrew Bremner (1989)
Manuscripta mathematica
Similarity:
Gerhard Niklash (1997)
Collectanea Mathematica
Similarity:
Haiyan Zhou (2006)
Acta Arithmetica
Similarity:
Bernadette Deshommes (1989)
Journal für die reine und angewandte Mathematik
Similarity:
Manabu Ozaki, Gen Yamamoto (2001)
Acta Arithmetica
Similarity:
H.J. Godwin (1983)
Journal für die reine und angewandte Mathematik
Similarity:
Isao Wakabayashi (2003)
Acta Arithmetica
Similarity:
Zhi-Hong Sun (2001)
Acta Arithmetica
Similarity:
Stéphane R. Louboutin (2011)
Colloquium Mathematicae
Similarity:
Let ε be a quartic algebraic unit. We give necessary and sufficient conditions for (i) the quartic number field K = ℚ(ε) to contain an imaginary quadratic subfield, and (ii) for the ring of algebraic integers of K to be equal to ℤ[ε]. We also prove that the class number of such K's goes to infinity effectively with the discriminant of K.
J. R. Delgado (1987)
Extracta Mathematicae
Similarity: