Displaying similar documents to “Hypersurfaces in spaces of constant curvature satisfying some Ricci-type equations”

Extended Derdziński-Shen theorem for curvature tensors

Carlo Alberto Mantica, Luca Guido Molinari (2012)

Colloquium Mathematicae

Similarity:

We extend a remarkable theorem of Derdziński and Shen, on the restrictions imposed on the Riemann tensor by the existence of a nontrivial Codazzi tensor. We show that the Codazzi equation can be replaced by a more general algebraic condition. The resulting extension applies both to the Riemann tensor and to generalized curvature tensors.

On semi-Riemannian manifolds satisfying some conformally invariant curvature condition

Ryszard Deszcz, Małgorzata Głogowska, Hideko Hashiguchi, Marian Hotloś, Makoto Yawata (2013)

Colloquium Mathematicae

Similarity:

We investigate semi-Riemannian manifolds with pseudosymmetric Weyl curvature tensor satisfying some additional condition imposed on their curvature tensor. Among other things we prove that the so-called Roter type equation holds on such manifolds. We present applications of our results to hypersurfaces in semi-Riemannian space forms, as well as to 4-dimensional warped products.

On some class of hypersurfaces with three distinct principal curvatures

Katarzyna Sawicz (2005)

Banach Center Publications

Similarity:

We investigate hypersurfaces M in spaces of constant curvature with some special minimal polynomial of the second fundamental tensor H of third degree. We present a curvature characterization of pseudosymmetry type for such hypersurfaces. We also prove that if such a hypersurface is a manifold with pseudosymmetric Weyl tensor then it must be pseudosymmetric.