Displaying similar documents to “Standard commuting dilations and liftings”

On dilation and commuting liftings of n-tuples of commuting Hilbert space contractions

Zbigniew Burdak, Wiesław Grygierzec (2020)

Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica

Similarity:

The n-tuples of commuting Hilbert space contractions are considered. We give a model of a commuting lifting of one contraction and investigate conditions under which a commuting lifting theorem holds for an n-tuple. A series of such liftings leads to an isometric dilation of the n-tuple. The method is tested on some class of triples motivated by Parrotts example. It provides also a new proof of the fact that a positive definite n-tuple has an isometric dilation.

Perturbations of operators similar to contractions and the commutator equation

C. Badea (2002)

Studia Mathematica

Similarity:

Let T and V be two Hilbert space contractions and let X be a linear bounded operator. It was proved by C. Foiaş and J. P. Williams that in certain cases the operator block matrix R(X;T,V) (equation (1.1) below) is similar to a contraction if and only if the commutator equation X = TZ-ZV has a bounded solution Z. We characterize here the similarity to contractions of some operator matrices R(X;T,V) in terms of growth conditions or of perturbations of R(0;T,V) = T ⊕ V.