The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Standard commuting dilations and liftings”

On dilation and commuting liftings of n-tuples of commuting Hilbert space contractions

Zbigniew Burdak, Wiesław Grygierzec (2020)

Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica

Similarity:

The n-tuples of commuting Hilbert space contractions are considered. We give a model of a commuting lifting of one contraction and investigate conditions under which a commuting lifting theorem holds for an n-tuple. A series of such liftings leads to an isometric dilation of the n-tuple. The method is tested on some class of triples motivated by Parrotts example. It provides also a new proof of the fact that a positive definite n-tuple has an isometric dilation.

Perturbations of operators similar to contractions and the commutator equation

C. Badea (2002)

Studia Mathematica

Similarity:

Let T and V be two Hilbert space contractions and let X be a linear bounded operator. It was proved by C. Foiaş and J. P. Williams that in certain cases the operator block matrix R(X;T,V) (equation (1.1) below) is similar to a contraction if and only if the commutator equation X = TZ-ZV has a bounded solution Z. We characterize here the similarity to contractions of some operator matrices R(X;T,V) in terms of growth conditions or of perturbations of R(0;T,V) = T ⊕ V.