Complete Kähler manifolds with zero Ricci curvature. II.
Shing Tung Yau, Gang Tian (1991)
Inventiones mathematicae
Similarity:
Shing Tung Yau, Gang Tian (1991)
Inventiones mathematicae
Similarity:
Yum-Tong Siu, Shing-Tung Yau (1980)
Inventiones mathematicae
Similarity:
Peter Li (1990)
Inventiones mathematicae
Similarity:
Sai-Kee Yeung (1990)
Mathematische Zeitschrift
Similarity:
Peter Li (1991)
Inventiones mathematicae
Similarity:
Sai Kee Yeung (1991)
Inventiones mathematicae
Similarity:
Pyo, Yong-Soo, Kim, Hyang Sook (2000)
Balkan Journal of Geometry and its Applications (BJGA)
Similarity:
Jaeman Kim (2006)
Czechoslovak Mathematical Journal
Similarity:
On a 4-dimensional anti-Kähler manifold, its zero scalar curvature implies that its Weyl curvature vanishes and vice versa. In particular any 4-dimensional anti-Kähler manifold with zero scalar curvature is flat.
Włodzimierz Jelonek (2014)
Colloquium Mathematicae
Similarity:
The aim of this paper is to describe all Kähler manifolds with quasi-constant holomorphic sectional curvature with κ = 0.
Huai-Dong Cao, Bennett Chow (1986)
Inventiones mathematicae
Similarity:
Alfred Gray (1977)
Inventiones mathematicae
Similarity: