Displaying similar documents to “From geometry to invertibility preservers”

Possible numbers ofx’s in an {x,y}-matrix with a given rank

Chao Ma (2017)

Open Mathematics

Similarity:

Let x, y be two distinct real numbers. An {x, y}-matrix is a matrix whose entries are either x or y. We determine the possible numbers of x’s in an {x, y}-matrix with a given rank. Our proof is constructive.

On the Yang-Baxter-like matrix equation for rank-two matrices

Duanmei Zhou, Guoliang Chen, Jiu Ding (2017)

Open Mathematics

Similarity:

Let A = PQT, where P and Q are two n × 2 complex matrices of full column rank such that QTP is singular. We solve the quadratic matrix equation AXA = XAX. Together with a previous paper devoted to the case that QTP is nonsingular, we have completely solved the matrix equation with any given matrix A of rank-two.

Remarks on the Sherman-Morrison-Woodbury formulae

Miroslav Fiedler (2003)

Mathematica Bohemica

Similarity:

We present some results on generalized inverses and their application to generalizations of the Sherman-Morrison-Woodbury-type formulae.

Zero-term rank preservers of integer matrices

Seok-Zun Song, Young-Bae Jun (2006)

Discussiones Mathematicae - General Algebra and Applications

Similarity:

The zero-term rank of a matrix is the minimum number of lines (row or columns) needed to cover all the zero entries of the given matrix. We characterize the linear operators that preserve the zero-term rank of the m × n integer matrices. That is, a linear operator T preserves the zero-term rank if and only if it has the form T(A)=P(A ∘ B)Q, where P, Q are permutation matrices and A ∘ B is the Schur product with B whose entries are all nonzero integers.

A new rank formula for idempotent matrices with applications

Yong Ge Tian, George P. H. Styan (2002)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

It is shown that rank ( P * A Q ) = rank ( P * A ) + rank ( A Q ) - rank ( A ) , where A is idempotent, [ P , Q ] has full row rank and P * Q = 0 . Some applications of the rank formula to generalized inverses of matrices are also presented.

Notes on a class of simple C*-algebras with real rank zero.

Kenneth R. Goodearl (1992)

Publicacions Matemàtiques

Similarity:

A construction method is presented for a class of simple C*-algebras whose basic properties -including their real ranks- can be computed relatively easily, using linear algebra. A numerival invariant attached to the construction determines wether a given algebra has real rank 0 or 1. Moreover, these algebras all have stable rank 1, and each nonzero hereditary sub-C*-algebra contains a nonzero projection, yet there are examples in which the linear span of the projections is not dense....

Trace and determinant in Banach algebras

Bernard Aupetit, H. Mouton (1996)

Studia Mathematica

Similarity:

We show that the trace and the determinant on a semisimple Banach algebra can be defined in a purely spectral and analytic way and then we obtain many consequences from these new definitions.