The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “The alternative Dunford-Pettis Property in the predual of a von Neumann algebra”

An alternative Dunford-Pettis Property

Walden Freedman (1997)

Studia Mathematica

Similarity:

An alternative to the Dunford-Pettis Property, called the DP1-property, is introduced. Its relationship to the Dunford-Pettis Property and other related properties is examined. It is shown that p -direct sums of spaces with DP1 have DP1 if 1 ≤ p < ∞. It is also shown that for preduals of von Neumann algebras, DP1 is strictly weaker than the Dunford-Pettis Property, while for von Neumann algebras, the two properties are equivalent.

Almost Weakly Compact Operators

Ioana Ghenciu, Paul Lewis (2006)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Dunford-Pettis type properties are studied in individual Banach spaces as well as in spaces of operators. Bibasic sequences are used to characterize Banach spaces which fail to have the Dunford-Pettis property. The question of whether a space of operators has a Dunford-Pettis property when the dual of the domain and the codomain have the respective property is studied. The notion of an almost weakly compact operator plays a consistent and important role in this study.

Quantification of the reciprocal Dunford-Pettis property

Ondřej F. K. Kalenda, Jiří Spurný (2012)

Studia Mathematica

Similarity:

We prove in particular that Banach spaces of the form C₀(Ω), where Ω is a locally compact space, enjoy a quantitative version of the reciprocal Dunford-Pettis property.

Polynomial characterizations of the Dunford-Pettis property.

Manuel González, Joaquín M. Gutiérrez (1991)

Extracta Mathematicae

Similarity:

We introduce and characterize the class P of polynomials between Banach spaces whose restrictions to Dunford-Pettis (DP) sets are weakly continuous. All the weakly compact and the scalar valued polynomials belong to P. We prove that a Banach space E has the Dunford-Pettis (DP) property if and only if every P ∈ P is weakly sequentially continuous. This result contains a characterization of the DP property given in [3], answering a question of Pelczynski: E has the DP property if and only...

On the class of b-L-weakly and order M-weakly compact operators

Driss Lhaimer, Mohammed Moussa, Khalid Bouras (2020)

Mathematica Bohemica

Similarity:

In this paper, we introduce and study new concepts of b-L-weakly and order M-weakly compact operators. As consequences, we obtain some characterizations of KB-spaces.