Displaying similar documents to “Banach algebras with unique uniform norm II”

Additively spectral-radius preserving surjections between unital semisimple commutative Banach algebras

Osamu Hatori, Go Hirasawa, Takeshi Miura (2010)

Open Mathematics

Similarity:

Let A and B be unital, semisimple commutative Banach algebras with the maximal ideal spaces M A and M B, respectively, and let r(a) be the spectral radius of a. We show that if T: A → B is a surjective mapping, not assumed to be linear, satisfying r(T(a) + T(b)) = r(a + b) for all a; b ∈ A, then there exist a homeomorphism φ: M B → M A and a closed and open subset K of M B such that T a ^ y = T e ^ y a ^ φ y y K T e ^ y a ^ φ y ¯ y M K for all a ∈ A, where e is unit element of A. If, in addition, T e ^ = 1 and T i e ^ = i on M B, then T is an algebra isomorphism. ...

Dual Banach algebras: representations and injectivity

Matthew Daws (2007)

Studia Mathematica

Similarity:

We study representations of Banach algebras on reflexive Banach spaces. Algebras which admit such representations which are bounded below seem to be a good generalisation of Arens regular Banach algebras; this class includes dual Banach algebras as defined by Runde, but also all group algebras, and all discrete (weakly cancellative) semigroup algebras. Such algebras also behave in a similar way to C*- and W*-algebras; we show that interpolation space techniques can be used in place of...

Amenability for dual Banach algebras

V. Runde (2001)

Studia Mathematica

Similarity:

We define a Banach algebra 𝔄 to be dual if 𝔄 = (𝔄⁎)* for a closed submodule 𝔄⁎ of 𝔄*. The class of dual Banach algebras includes all W*-algebras, but also all algebras M(G) for locally compact groups G, all algebras ℒ(E) for reflexive Banach spaces E, as well as all biduals of Arens regular Banach algebras. The general impression is that amenable, dual Banach algebras are rather the exception than the rule. We confirm this impression. We first show that under certain conditions...