Displaying similar documents to “The quasi-hereditary algebra associated to the radical bimodule over a hereditary algebra”

Koszul and quasi-Koszul algebras obtained by tilting

R. M. Aquino, E. L. Green, E. N. Marcos (2002)

Colloquium Mathematicae

Similarity:

Given a finite-dimensional algebra, we present sufficient conditions on the projective presentation of the algebra modulo its radical for a tilted algebra to be a Koszul algebra and for the endomorphism ring of a tilting module to be a quasi-Koszul algebra. One condition we impose is that the algebra has global dimension no greater than 2. One of the main techniques is studying maps between the direct summands of the tilting module. Some applications are given. We also show that a Brenner-Butler...

Matrices over upper triangular bimodules and Δ-filtered modules over quasi-hereditary algebras

Thomas Brüstle, Lutz Hille (2000)

Colloquium Mathematicae

Similarity:

Let Λ be a directed finite-dimensional algebra over a field k, and let B be an upper triangular bimodule over Λ. Then we show that the category of B-matrices mat B admits a projective generator P whose endomorphism algebra End P is quasi-hereditary. If A denotes the opposite algebra of End P, then the functor Hom(P,-) induces an equivalence between mat B and the category ℱ(Δ) of Δ-filtered A-modules. Moreover, any quasi-hereditary algebra whose category of Δ-filtered modules is equivalent...

On Auslander-Reiten translates in functorially finite subcategories and applications

K. Erdmann, D. Madsen, V. Miemietz (2010)

Colloquium Mathematicae

Similarity:

We consider functorially finite subcategories in module categories over Artin algebras. One main result provides a method, in the setup of bounded derived categories, to compute approximations and the end terms of relative Auslander-Reiten sequences. We also prove an Auslander-Reiten formula for the setting of functorially finite subcategories. Furthermore, we study the category of modules filtered by standard modules for certain quasi-hereditary algebras and we classify precisely when...