Displaying similar documents to “Compactness conditions for elementary operators”

On λ-commuting operators

John B. Conway, Gabriel Prǎjiturǎ (2005)

Studia Mathematica

Similarity:

For a scalar λ, two operators T and S are said to λ-commute if TS = λST. In this note we explore the pervasiveness of the operators that λ-commute with a compact operator by characterizing the closure and the interior of the set of operators with this property.

Composition of (E,2)-summing operators

Andreas Defant, Mieczysław Mastyło (2003)

Studia Mathematica

Similarity:

The Banach operator ideal of (q,2)-summing operators plays a fundamental role within the theory of s-number and eigenvalue distribution of Riesz operators in Banach spaces. A key result in this context is a composition formula for such operators due to H. König, J. R. Retherford and N. Tomczak-Jaegermann. Based on abstract interpolation theory, we prove a variant of this result for (E,2)-summing operators, E a symmetric Banach sequence space.

Backward extensions of hyperexpansive operators

Zenon J. Jabłoński, Il Bong Jung, Jan Stochel (2006)

Studia Mathematica

Similarity:

The concept of k-step full backward extension for subnormal operators is adapted to the context of completely hyperexpansive operators. The question of existence of k-step full backward extension is solved within this class of operators with the help of an operator version of the Levy-Khinchin formula. Some new phenomena in comparison with subnormal operators are found and related classes of operators are discussed as well.