Displaying similar documents to “Some properties of N-supercyclic operators”

n-supercyclic operators

Nathan S. Feldman (2002)

Studia Mathematica

Similarity:

We show that there are linear operators on Hilbert space that have n-dimensional subspaces with dense orbit, but no (n-1)-dimensional subspaces with dense orbit. This leads to a new class of operators, called the n-supercyclic operators. We show that many cohyponormal operators are n-supercyclic. Furthermore, we prove that for an n-supercyclic operator, there are n circles centered at the origin such that every component of the spectrum must intersect one of these circles.

Recent developments in hypercyclicity.

Karl-Goswin Grosse-Erdmann (2003)

RACSAM

Similarity:

In these notes we report on recent progress in the theory of hypercyclic and chaotic operators. Our discussion will be guided by the following fundamental problems: How do we recognize hypercyclic operators? How many vectors are hypercyclic? How many operators are hypercyclic? How big can non-dense orbits be?

Hypercyclic sequences of operators

Fernando León-Saavedra, Vladimír Müller (2006)

Studia Mathematica

Similarity:

A sequence (Tₙ) of bounded linear operators between Banach spaces X,Y is said to be hypercyclic if there exists a vector x ∈ X such that the orbit Tₙx is dense in Y. The paper gives a survey of various conditions that imply the hypercyclicity of (Tₙ) and studies relations among them. The particular case of X = Y and mutually commuting operators Tₙ is analyzed. This includes the most interesting cases (Tⁿ) and (λₙTⁿ) where T is a fixed operator and λₙ are complex numbers. We also study...

Dense range perturbations of hypercyclic operators

Luis Bernal-Gonzalez (2002)

Colloquium Mathematicae

Similarity:

We show that if (Tₙ) is a hypercyclic sequence of linear operators on a locally convex space and (Sₙ) is a sequence of linear operators such that the image of each orbit under every linear functional is non-dense then the sequence (Tₙ + Sₙ) has dense range. Furthermore, it is proved that if T,S are commuting linear operators in such a way that T is hypercyclic and all orbits under S satisfy the above non-denseness property then T - S has dense range. Corresponding statements for operators...

Exponentials of normal operators and commutativity of operators: a new approach

Mohammed Hichem Mortad (2011)

Colloquium Mathematicae

Similarity:

We present a new approach to the question of when the commutativity of operator exponentials implies that of the operators. This is proved in the setting of bounded normal operators on a complex Hilbert space. The proofs are based on some results on similarities by Berberian and Embry as well as the celebrated Fuglede theorem.

Backward Aluthge iterates of a hyponormal operator and scalar extensions

C. Benhida, E. H. Zerouali (2009)

Studia Mathematica

Similarity:

Let R and S be two operators on a Hilbert space. We discuss the link between the subscalarity of RS and SR. As an application, we show that backward Aluthge iterates of hyponormal operators and p-quasihyponormal operators are subscalar.

The inclusion theorem for multiple summing operators

David Pérez-García (2004)

Studia Mathematica

Similarity:

We prove that, for 1 ≤ p ≤ q < 2, each multiple p-summing multilinear operator between Banach spaces is also q-summing. We also give an improvement of this result for an image space of cotype 2. As a consequence, we obtain a characterization of Hilbert-Schmidt multilinear operators similar to the linear one given by A. Pełczyński in 1967. We also give a multilinear generalization of Grothendieck's Theorem for GT spaces.

Polaroid type operators and compact perturbations

Chun Guang Li, Ting Ting Zhou (2014)

Studia Mathematica

Similarity:

A bounded linear operator T acting on a Hilbert space is said to be polaroid if each isolated point in the spectrum is a pole of the resolvent of T. There are several generalizations of the polaroid property. We investigate compact perturbations of polaroid type operators. We prove that, given an operator T and ε > 0, there exists a compact operator K with ||K|| < ε such that T + K is polaroid. Moreover, we characterize those operators for which a certain polaroid type property...

On operators close to isometries

Sameer Chavan (2008)

Studia Mathematica

Similarity:

We introduce and discuss a class of operators, to be referred to as operators close to isometries. The Bergman-type operators, 2-hyperexpansions, expansive p-isometries, and certain alternating hyperexpansions are main examples of such operators. We establish a few decomposition theorems for operators close to isometries. Applications are given to the theory of p-isometries and of hyperexpansive operators.

Disjoint hypercyclic operators

Luis Bernal-González (2007)

Studia Mathematica

Similarity:

We introduce the concept of disjoint hypercyclic operators. These are operators performing the approximation of any given vectors with a common subsequence of iterates applied on a common vector. The notion is extended to sequences of operators, and applied to composition operators and differential operators on spaces of analytic functions.

On λ-commuting operators

John B. Conway, Gabriel Prǎjiturǎ (2005)

Studia Mathematica

Similarity:

For a scalar λ, two operators T and S are said to λ-commute if TS = λST. In this note we explore the pervasiveness of the operators that λ-commute with a compact operator by characterizing the closure and the interior of the set of operators with this property.