The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Strongly simply connected coil algebras”

On minimal non-tilted algebras

Flávio U. Coelho, José A. de la Peña, Sonia Trepode (2008)

Colloquium Mathematicae

Similarity:

A minimal non-tilted triangular algebra such that any proper semiconvex subcategory is tilted is called a tilt-semicritical algebra. We study the tilt-semicritical algebras which are quasitilted or one-point extensions of tilted algebras of tame hereditary type. We establish inductive procedures to decide whether or not a given strongly simply connected algebra is tilted.

On domestic algebras of semiregular type

Alicja Jaworska-Pastuszak, Andrzej Skowroński (2013)

Colloquium Mathematicae

Similarity:

We describe the structure of finite-dimensional algebras of domestic representation type over an algebraically closed field whose Auslander-Reiten quiver consists of generalized standard and semiregular components. Moreover, we prove that this class of algebras contains all special biserial algebras whose Auslander-Reiten quiver consists of semiregular components.

Left sections and the left part of an artin algebra

Ibrahim Assem (2009)

Colloquium Mathematicae

Similarity:

We define a notion of left section in an Auslander-Reiten component, by weakening one of the axioms for sections. We derive a generalisation of the Liu-Skowroński criterion for tilted algebras, then apply our results to describe the Auslander-Reiten components lying in the left part of an artin algebra.

A review on δ-structurable algebras

Noriaki Kamiya, Daniel Mondoc, Susumu Okubo (2011)

Banach Center Publications

Similarity:

In this paper we give a review on δ-structurable algebras. A connection between Malcev algebras and a generalization of δ-structurable algebras is also given.

On selfinjective algebras of tilted type

Andrzej Skowroński, Kunio Yamagata (2015)

Colloquium Mathematicae

Similarity:

We provide a characterization of all finite-dimensional selfinjective algebras over a field K which are socle equivalent to a prominent class of selfinjective algebras of tilted type.