Displaying similar documents to “On unitary equivalence of quasi-free Hilbert modules”

Covariant version of the Stinespring type theorem for Hilbert C*-modules

Maria Joiţa (2011)

Open Mathematics

Similarity:

In this paper, we prove a covariant version of the Stinespring theorem for Hilbert C*-modules. Also, we show that there is a bijective correspondence between operator valued completely positive maps, (u′, u)-covariant with respect to the dynamical system (G, η, X) on Hilbert C*-modules and (u′, u)-covariant operator valued completely positive maps on the crossed product G ×η X of X by η.

Projective Hilbert A(D)-modules.

Carlson, Jon F., Clark, Douglas N., Foias, Ciprian, Williams, J.P. (1994)

The New York Journal of Mathematics [electronic only]

Similarity:

A Morita equivalence for Hilbert C*-modules

Maria Joiţa, Mohammad Sal Moslehian (2012)

Studia Mathematica

Similarity:

We introduce a notion of Morita equivalence for Hilbert C*-modules in terms of the Morita equivalence of the algebras of compact operators on Hilbert C*-modules. We investigate the properties of the new Morita equivalence. We apply our results to study continuous actions of locally compact groups on full Hilbert C*-modules. We also present an extension of Green's theorem in the context of Hilbert C*-modules.

Generalized n-circular projections on JB*-triples and Hilbert C0(Ω)-modules

Dijana Ilišević, Chih-Neng Liu, Ngai-Ching Wong (2017)

Concrete Operators

Similarity:

Being expected as a Banach space substitute of the orthogonal projections on Hilbert spaces, generalized n-circular projections also extend the notion of generalized bicontractive projections on JB*-triples. In this paper, we study some geometric properties of JB*-triples related to them. In particular, we provide some structure theorems of generalized n-circular projections on an often mentioned special case of JB*-triples, i.e., Hilbert C*-modules over abelian C*-algebras C0(Ω). ...

Projectivity and lifting of Hilbert module maps

Douglas N. Clark (1997)

Annales Polonici Mathematici

Similarity:

In a recent paper, Carlson, Foiaş, Williams and the author proved that isometric Hilbert modules are projective in the category of Hilbert modules similar to contractive ones. In this paper, a simple proof, based on a strengthened lifting theorem, is given. The proof also applies to an equivalent theorem of Foiaş and Williams on similarity to a contraction of a certain 2 × 2 operator matrix.

Unbounded Hermitian operators and relative reproducing kernel Hilbert space

Palle Jorgensen (2010)

Open Mathematics

Similarity:

We study unbounded Hermitian operators with dense domain in Hilbert space. As is known, the obstruction for a Hermitian operator to be selfadjoint or to have selfadjoint extensions is measured by a pair of deficiency indices, and associated deficiency spaces; but in practical problems, the direct computation of these indices can be difficult. Instead, in this paper we identify additional structures that throw light on the problem. We will attack the problem of computing deficiency spaces...

Tensor products of Hilbert modules over locally C * -algebras

Maria Joiţa (2004)

Czechoslovak Mathematical Journal

Similarity:

In this paper the tensor products of Hilbert modules over locally C * -algebras are defined and their properties are studied. Thus we show that most of the basic properties of the tensor products of Hilbert C * -modules are also valid in the context of Hilbert modules over locally C * -algebras.

Murphy's "Positive definite kernels and Hilbert C*-modules" reorganized

Franciszek Hugon Szafraniec (2010)

Banach Center Publications

Similarity:

The paper the title refers to is that in Proceedings of the Edinburgh Mathematical Society, 40 (1997), 367-374. Taking it as an excuse we intend to realize a twofold purpose: 1° to atomize that important result showing by the way connections which are out of favour, 2° to rectify a tiny piece of history. The objective 1° is going to be achieved by adopting means adequate to goals; it is of great gravity and this is just Mathematics. The other,...

On full Hilbert C * -modules.

Moslehian, Mohammad Sal (2001)

Bulletin of the Malaysian Mathematical Sciences Society. Second Series

Similarity:

On a generalization of W*-modules

David P. Blecher, Jon E. Kraus (2010)

Banach Center Publications

Similarity:

a recent paper of the first author and Kashyap, a new class of Banach modules over dual operator algebras is introduced. These generalize the W*-modules (that is, Hilbert C*-modules over a von Neumann algebra which satisfy an analogue of the Riesz representation theorem for Hilbert spaces), which in turn generalize Hilbert spaces. In the present paper, we describe these modules, giving some motivation, and we prove several new results about them.