On integral equations in a Banach space
Józef Piórek (1979)
Annales Polonici Mathematici
Similarity:
Józef Piórek (1979)
Annales Polonici Mathematici
Similarity:
Stanisław Szufla (1977)
Annales Polonici Mathematici
Similarity:
Jochen Reinermann (1970)
Annales Polonici Mathematici
Similarity:
K. Goebel, E. Złotkiewicz (1971)
Colloquium Mathematicae
Similarity:
J. R. Holub (1971)
Colloquium Mathematicae
Similarity:
V. Lakshmikantham, A. R. Mitchell, R. W. Mitchell (1978)
Annales Polonici Mathematici
Similarity:
Stanisław Szufla (2009)
Discussiones Mathematicae, Differential Inclusions, Control and Optimization
Similarity:
Antonio S. Granero, Mar Jiménez, Alejandro Montesinos, José P. Moreno, Anatolij Plichko (2003)
Studia Mathematica
Similarity:
Stephen A. Saxon, Albert Wilansky (1977)
Colloquium Mathematicae
Similarity:
Vincenzo B. Moscatelli (1973)
Publications du Département de mathématiques (Lyon)
Similarity:
Alistair Bird, Niels Jakob Laustsen (2010)
Banach Center Publications
Similarity:
We create a new family of Banach spaces, the James-Schreier spaces, by amalgamating two important classical Banach spaces: James' quasi-reflexive Banach space on the one hand and Schreier's Banach space giving a counterexample to the Banach-Saks property on the other. We then investigate the properties of these James-Schreier spaces, paying particular attention to how key properties of their 'ancestors' (that is, the James space and the Schreier space) are expressed in them. Our main...
Iryna Banakh, Taras Banakh (2010)
Studia Mathematica
Similarity:
We prove that for each dense non-compact linear operator S: X → Y between Banach spaces there is a linear operator T: Y → c₀ such that the operator TS: X → c₀ is not compact. This generalizes the Josefson-Nissenzweig Theorem.
Ciesielski, K., Moslehian, M.S. (2010)
Annals of Functional Analysis (AFA) [electronic only]
Similarity: