The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Weak countable compactness implies quasi-weak drop property”

On weak drop property and quasi-weak drop property

J. H. Qiu (2003)

Studia Mathematica

Similarity:

Every weakly sequentially compact convex set in a locally convex space has the weak drop property and every weakly compact convex set has the quasi-weak drop property. An example shows that the quasi-weak drop property is strictly weaker than the weak drop property for closed bounded convex sets in locally convex spaces (even when the spaces are quasi-complete). For closed bounded convex subsets of quasi-complete locally convex spaces, the quasi-weak drop property is equivalent to weak...

On the quasi-weak drop property

J. H. Qiu (2002)

Studia Mathematica

Similarity:

A new drop property, the quasi-weak drop property, is introduced. Using streaming sequences introduced by Rolewicz, a characterisation of the quasi-weak drop property is given for closed bounded convex sets in a Fréchet space. From this, it is shown that the quasi-weak drop property is equivalent to weak compactness. Thus a Fréchet space is reflexive if and only if every closed bounded convex set in the space has the quasi-weak drop property.

Drop property on locally convex spaces

Ignacio Monterde, Vicente Montesinos (2008)

Studia Mathematica

Similarity:

A single technique provides short proofs of some results about drop properties on locally convex spaces. It is shown that the quasi drop property is equivalent to a drop property for countably closed sets. As a byproduct, we prove that the drop and quasi drop properties are separably determined.

Weak orderability of second countable spaces

Valentin Gutev (2007)

Fundamenta Mathematicae

Similarity:

We demonstrate that a second countable space is weakly orderable if and only if it has a continuous weak selection. This provides a partial positive answer to a question of van Mill and Wattel.

Selections and weak orderability

Michael Hrušák, Iván Martínez-Ruiz (2009)

Fundamenta Mathematicae

Similarity:

We answer a question of van Mill and Wattel by showing that there is a separable locally compact space which admits a continuous weak selection but is not weakly orderable. Furthermore, we show that a separable space which admits a continuous weak selection can be covered by two weakly orderable spaces. Finally, we give a partial answer to a question of Gutev and Nogura by showing that a separable space which admits a continuous weak selection admits a continuous selection for all finite...