Quasiconformal and harmonic mappings between smooth Jordan domains.
Kalaj, David, Mateljević, Miodrag (2008)
Novi Sad Journal of Mathematics
Similarity:
Kalaj, David, Mateljević, Miodrag (2008)
Novi Sad Journal of Mathematics
Similarity:
Mateljević, M., Vuorinen, M. (2010)
Journal of Inequalities and Applications [electronic only]
Similarity:
Mateljević, Miodrag (2004)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
Andrzej Michalski (2008)
Annales UMCS, Mathematica
Similarity:
In this paper we introduce a class of increasing homeomorphic self-mappings of R. We define a harmonic extension of such functions to the upper halfplane by means of the Poisson integral. Our main results give some sufficient conditions for quasiconformality of the extension.
Kalaj, David, Pavlović, Miroslav (2005)
Annales Academiae Scientiarum Fennicae. Mathematica
Similarity:
Gutlyanskij, V.Ya., Ryazanov, V.I. (1996)
Annales Academiae Scientiarum Fennicae. Series A I. Mathematica
Similarity:
Strebel, Kurt (1998)
Annales Academiae Scientiarum Fennicae. Mathematica
Similarity:
Tyutyuev, A.V., Shlyk, V.A. (2004)
Zapiski Nauchnykh Seminarov POMI
Similarity:
V. P. Mićić (1972)
Matematički Vesnik
Similarity:
Vladimir Gutlyanskii, Olli Martio, Vladimir Ryazanov (2011)
Annales UMCS, Mathematica
Similarity:
We give a quasiconformal version of the proof for the classical Lindelöf theorem: Let f map the unit disk D conformally onto the inner domain of a Jordan curve C. Then C is smooth if and only if arh f'(z) has a continuous extension to D. Our proof does not use the Poisson integral representation of harmonic functions in the unit disk.
Kovalev, Leonid V. (2004)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
Kaljaj, David (2001)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
Giovanni Porru (1977)
Rendiconti del Seminario Matematico della Università di Padova
Similarity: