Displaying similar documents to “A remark on the multipliers of the Haar basis of L¹[0,1]”

Multipliers of sequence spaces

Raymond Cheng, Javad Mashreghi, William T. Ross (2017)

Concrete Operators

Similarity:

This paper is selective survey on the space lAp and its multipliers. It also includes some connections of multipliers to Birkhoff-James orthogonality

Schur and operator multipliers

Ivan G. Todorov, Lyudmila Turowska (2010)

Banach Center Publications

Similarity:

The present article is a survey of known results on Schur and operator multipliers. It starts with the classical description of Schur multipliers due to Grothendieck, followed by a discussion of measurable Schur multipliers and a generalisation of Grothendieck's Theorem due to Peller. Thereafter, a non-commutative version of Schur multipliers, called operator multipliers and introduced by Kissin and Schulman, is discussed, and a characterisation extending the description in the commutative...

Distinctness of spaces of Lorentz-Zygmund multipliers

Kathryn E. Hare, Parasar Mohanty (2005)

Studia Mathematica

Similarity:

We study the spaces of Lorentz-Zygmund multipliers on compact abelian groups and show that many of these spaces are distinct. This generalizes earlier work on the non-equality of spaces of Lorentz multipliers.

Multipliers on a Hilbert Space of Functions on R

Petkova, Violeta (2009)

Serdica Mathematical Journal

Similarity:

2000 Mathematics Subject Classification: 42A45. For a Hilbert space H ⊂ L1loc(R) of functions on R we obtain a representation theorem for the multipliers M commuting with the shift operator S. This generalizes the classical result for multipliers in L2(R) as well as our previous result for multipliers in weighted space L2ω(R). Moreover, we obtain a description of the spectrum of S.

The Marcinkiewicz multiplier condition for bilinear operators

Loukas Grafakos, Nigel J. Kalton (2001)

Studia Mathematica

Similarity:

This article is concerned with the question of whether Marcinkiewicz multipliers on 2 n give rise to bilinear multipliers on ℝⁿ × ℝⁿ. We show that this is not always the case. Moreover, we find necessary and sufficient conditions for such bilinear multipliers to be bounded. These conditions in particular imply that a slight logarithmic modification of the Marcinkiewicz condition gives multipliers for which the corresponding bilinear operators are bounded on products of Lebesgue and Hardy...