Displaying similar documents to “On partial isometries in C*-algebras”

Order theory and interpolation in operator algebras

David P. Blecher, Charles John Read (2014)

Studia Mathematica

Similarity:

In earlier papers we have introduced and studied a new notion of positivity in operator algebras, with an eye to extending certain C*-algebraic results and theories to more general algebras. Here we continue to develop this positivity and its associated ordering, proving many foundational facts. We also give many applications, for example to noncommutative topology, noncommutative peak sets, lifting problems, peak interpolation, approximate identities, and to order relations between...

Extension via interpolation

A. Goncharov (2005)

Banach Center Publications

Similarity:

We suggest a modification of the Pawłucki and Pleśniak method to construct a continuous linear extension operator by means of interpolation polynomials. As an illustration we present explicitly the extension operator for the space of Whitney functions given on the Cantor ternary set.

Three ways of interpolation on finite elements

Šolín, Pavel, Segeth, Karel

Similarity:

Interpolation on finite elements usually occurs in a Hilbert space setting, which means that interpolation techniques involving orthogonal projection are an alternative for the traditional Lagrange nodal interpolation schemes. In addition to the Lagrange interpolation, this paper discusses the global orthogonal projection and the projection-based interpolation. These techniques are compared from the point of view of quality, efficiency, sensitivity to input parameters and other aspects....