Displaying similar documents to “Generalized recurrence, compactifications, and the Lyapunov topology”

Hydromagnetic stability of stratified shear flows in the presence of cross flow

Naresh Kumar Dua, Hari Kishan, Ruchi Goel (2011)

Annales Polonici Mathematici

Similarity:

The hydromagnetic stability of stratified shear flows in the presence of cross flows is discussed. The magnetic field is applied in the direction of the main flow. Some necessary conditions of instability, the growth rate of unstable modes and reduction of the unstable region are discussed.

Pullback incremental attraction

Peter E. Kloeden, Thomas Lorenz (2014)

Nonautonomous Dynamical Systems

Similarity:

A pullback incremental attraction, a nonautonomous version of incremental stability, is introduced for nonautonomous systems that may have unbounded limiting solutions. Its characterisation by a Lyapunov function is indicated.

Symbolic dynamics and Lyapunov exponents for Lozi maps

Diogo Baptista, Ricardo Severino (2012)

ESAIM: Proceedings

Similarity:

Building on the kneading theory for Lozi maps introduced by Yutaka Ishii, in 1997, we introduce a symbolic method to compute its largest Lyapunov exponent. We use this method to study the behavior of the largest Lyapunov exponent for the set of points whose forward and backward orbits remain bounded, and find the maximum value that the largest Lyapunov exponent can assume.

On the L 2 -instability and L 2 -controllability of steady flows of an ideal incompressible fluid

Alexander Shnirelman (1999)

Journées équations aux dérivées partielles

Similarity:

In the existing stability theory of steady flows of an ideal incompressible fluid, formulated by V. Arnold, the stability is understood as a stability with respect to perturbations with small in L 2 vorticity. Nothing has been known about the stability under perturbation with small energy, without any restrictions on vorticity; it was clear that existing methods do not work for this (the most physically reasonable) class of perturbations. We prove that in fact, every nontrivial steady...