Displaying similar documents to “Vector integration and the Grothendieck inequality”

A characterization of the invertible measures

A. Ülger (2007)

Studia Mathematica

Similarity:

Let G be a locally compact abelian group and M(G) its measure algebra. Two measures μ and λ are said to be equivalent if there exists an invertible measure ϖ such that ϖ*μ = λ. The main result of this note is the following: A measure μ is invertible iff |μ̂| ≥ ε on Ĝ for some ε > 0 and μ is equivalent to a measure λ of the form λ = a + θ, where a ∈ L¹(G) and θ ∈ M(G) is an idempotent measure.

A SOR Acceleration of Self-Adjoint and m-Accretive Splitting Iterative Solver for 2-D Neutron Transport Equation

O. Awono, J. Tagoudjeu (2010)

Mathematical Modelling of Natural Phenomena

Similarity:

We present an iterative method based on an infinite dimensional adaptation of the successive overrelaxation (SOR) algorithm for solving the 2-D neutron transport equation. In a wide range of application, the neutron transport operator admits a Self-Adjoint and m-Accretive Splitting (SAS). This splitting leads to an ADI-like iterative method which converges unconditionally and is equivalent to a fixed point problem where the operator is ...

Research Article. Multiscale Analysis of 1-rectifiable Measures II: Characterizations

Matthew Badger, Raanan Schul (2017)

Analysis and Geometry in Metric Spaces

Similarity:

A measure is 1-rectifiable if there is a countable union of finite length curves whose complement has zero measure. We characterize 1-rectifiable Radon measures μ in n-dimensional Euclidean space for all n ≥ 2 in terms of positivity of the lower density and finiteness of a geometric square function, which loosely speaking, records in an L2 gauge the extent to which μ admits approximate tangent lines, or has rapidly growing density ratios, along its support. In contrast with the classical...

How the μ-deformed Segal-Bargmann space gets two measures

Stephen Bruce Sontz (2010)

Banach Center Publications

Similarity:

This note explains how the two measures used to define the μ-deformed Segal-Bargmann space are natural and essentially unique structures. As is well known, the density with respect to Lebesgue measure of each of these measures involves a Macdonald function. Our primary result is that these densities are the solution of a system of ordinary differential equations which is naturally associated with this theory. We then solve this system and find the known densities as well as a "spurious"...

Which Bernoulli measures are good measures?

Ethan Akin, Randall Dougherty, R. Daniel Mauldin, Andrew Yingst (2008)

Colloquium Mathematicae

Similarity:

For measures on a Cantor space, the demand that the measure be "good" is a useful homogeneity condition. We examine the question of when a Bernoulli measure on the sequence space for an alphabet of size n is good. Complete answers are given for the n = 2 cases and the rational cases. Partial results are obtained for the general cases.

Can interestingness measures be usefully visualized?

Robert Susmaga, Izabela Szczech (2015)

International Journal of Applied Mathematics and Computer Science

Similarity:

The paper presents visualization techniques for interestingness measures. The process of measure visualization provides useful insights into different domain areas of the visualized measures and thus effectively assists their comprehension and selection for different knowledge discovery tasks. Assuming a common domain form of the visualized measures, a set of contingency tables, which consists of all possible tables having the same total number of observations, is constructed. These...

Conical measures and vector measures

Igor Kluvánek (1977)

Annales de l'institut Fourier

Similarity:

Every conical measure on a weak complete space E is represented as integration with respect to a σ -additive measure on the cylindrical σ -algebra in E . The connection between conical measures on E and E -valued measures gives then some sufficient conditions for the representing measure to be finite.

Some remarks on Gleason measures

P. De Nápoli, M. C. Mariani (2007)

Studia Mathematica

Similarity:

This work is devoted to generalizing the Lebesgue decomposition and the Radon-Nikodym theorem to Gleason measures. For that purpose we introduce a notion of integral for operators with respect to a Gleason measure. Finally, we give an example showing that the Gleason theorem does not hold in non-separable Hilbert spaces.