Displaying similar documents to “Quantification of the reciprocal Dunford-Pettis property”

A note on L-Dunford-Pettis sets in a topological dual Banach space

Abderrahman Retbi (2020)

Czechoslovak Mathematical Journal

Similarity:

The present paper is devoted to some applications of the notion of L-Dunford-Pettis sets to several classes of operators on Banach lattices. More precisely, we establish some characterizations of weak Dunford-Pettis, Dunford-Pettis completely continuous, and weak almost Dunford-Pettis operators. Next, we study the relationships between L-Dunford-Pettis, and Dunford-Pettis (relatively compact) sets in topological dual Banach spaces.

On strongly Pettis integrable functions in locally convex spaces.

N. D. Chakraborty, Sk. Jaker Ali (1993)

Revista Matemática de la Universidad Complutense de Madrid

Similarity:

Some characterizations have been given for the relative compactness of the range of the indefinite Pettis integral of a function on a complete finite measure space with values in a quasicomplete Hausdorff locally convex space. It has been shown that the indefinite Pettis integral has a relatively compact range if the functions is measurable by seminorm. Separation property has been defined for a scalarly measurable function and it has been proved that a function with this property is...

Almost Weakly Compact Operators

Ioana Ghenciu, Paul Lewis (2006)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Dunford-Pettis type properties are studied in individual Banach spaces as well as in spaces of operators. Bibasic sequences are used to characterize Banach spaces which fail to have the Dunford-Pettis property. The question of whether a space of operators has a Dunford-Pettis property when the dual of the domain and the codomain have the respective property is studied. The notion of an almost weakly compact operator plays a consistent and important role in this study.

An approach to Schreier's space.

Jesús M. Fernández Castillo, Manuel González (1991)

Extracta Mathematicae

Similarity:

In 1930, J. Schreier [10] introduced the notion of admissibility in order to show that the now called weak-Banach-Saks property does not hold in every Banach space. A variation of this idea produced the Schreier's space (see [1],[2]). This is the space obtained by completion of the space of finite sequences with respect to the following norm: ||x||S = sup(A admissible)j ∈ A |xj|, ...