Antiproximinal ѕets in Banach ѕpaces
S. Cobzaş (1999)
Acta Universitatis Carolinae. Mathematica et Physica
Similarity:
S. Cobzaş (1999)
Acta Universitatis Carolinae. Mathematica et Physica
Similarity:
Soltanov, Kamal N. (2007)
Fixed Point Theory and Applications [electronic only]
Similarity:
P. Holický, O. F. K. Kalenda, L. Veselý, L. Zajíček (2007)
Bulletin of the Polish Academy of Sciences. Mathematics
Similarity:
On each nonreflexive Banach space X there exists a positive continuous convex function f such that 1/f is not a d.c. function (i.e., a difference of two continuous convex functions). This result together with known ones implies that X is reflexive if and only if each everywhere defined quotient of two continuous convex functions is a d.c. function. Our construction also gives a stronger version of Klee's result concerning renormings of nonreflexive spaces and non-norm-attaining functionals. ...
N. Tenney Peck (1981)
Mathematische Zeitschrift
Similarity:
Ivan Singer (1966-1967)
Séminaire Choquet. Initiation à l'analyse
Similarity:
L. Loveland, J. Valentine (1978)
Fundamenta Mathematicae
Similarity:
Traoré, S., Volle, M. (1996)
Journal of Convex Analysis
Similarity:
Jesús M. F. Castillo, Manuel González, Pier Luigi Papini (2014)
Studia Mathematica
Similarity:
We study different aspects of the representation of weak*-compact convex sets of the bidual X** of a separable Banach space X via a nested sequence of closed convex bounded sets of X.
Taras Banakh, Ivan Hetman, Katsuro Sakai (2013)
Studia Mathematica
Similarity:
Maria D. Acosta, Vicente Montesinos (2006)
Acta Universitatis Carolinae. Mathematica et Physica
Similarity: