Displaying similar documents to “Universal bounds for positive matrix semigroups”

Universal bounds for matrix semigroups

Leo Livshits, Gordon MacDonald, Heydar Radjavi (2011)

Studia Mathematica

Similarity:

We show that any compact semigroup of n × n matrices is similar to a semigroup bounded by √n. We give examples to show that this bound is best possible and consider the effect of the minimal rank of matrices in the semigroup on this bound.

Wreath product of a semigroup and a Γ-semigroup

Mridul K. Sen, Sumanta Chattopadhyay (2008)

Discussiones Mathematicae - General Algebra and Applications

Similarity:

Let S = {a,b,c,...} and Γ = {α,β,γ,...} be two nonempty sets. S is called a Γ -semigroup if aαb ∈ S, for all α ∈ Γ and a,b ∈ S and (aαb)βc = aα(bβc), for all a,b,c ∈ S and for all α,β ∈ Γ. In this paper we study the semidirect product of a semigroup and a Γ-semigroup. We also introduce the notion of wreath product of a semigroup and a Γ-semigroup and investigate some interesting properties of this product.

A -systems

R. Gorton (1976)

Compositio Mathematica

Similarity: