Displaying similar documents to “Generic linear cocycles over a minimal base”

Noninvertible minimal maps

Sergiĭ Kolyada, L'ubomír Snoha, Sergeĭ Trofimchuk (2001)

Fundamenta Mathematicae

Similarity:

For a discrete dynamical system given by a compact Hausdorff space X and a continuous selfmap f of X the connection between minimality, invertibility and openness of f is investigated. It is shown that any minimal map is feebly open, i.e., sends open sets to sets with nonempty interiors (and if it is open then it is a homeomorphism). Further, it is shown that if f is minimal and A ⊆ X then both f(A) and f - 1 ( A ) share with A those topological properties which describe how large a set is. Using...

Two commuting maps without common minimal points

Tomasz Downarowicz (2011)

Colloquium Mathematicae

Similarity:

We construct an example of two commuting homeomorphisms S, T of a compact metric space X such that the union of all minimal sets for S is disjoint from the union of all minimal sets for T. In other words, there are no common minimal points. This answers negatively a question posed in [C-L]. We remark that Furstenberg proved the existence of "doubly recurrent" points (see [F]). Not only are these points recurrent under both S and T, but they recur along the same sequence of powers. Our...

C 1 -minimal subsets of the circle

Dusa McDuff (1981)

Annales de l'institut Fourier

Similarity:

Necessary conditions are found for a Cantor subset of the circle to be minimal for some C 1 -diffeomorphism. These conditions are not satisfied by the usual ternary Cantor set.

Composition operators on W 1 X are necessarily induced by quasiconformal mappings

Luděk Kleprlík (2014)

Open Mathematics

Similarity:

Let Ω ⊂ ℝn be an open set and X(Ω) be any rearrangement invariant function space close to L q(Ω), i.e. X has the q-scaling property. We prove that each homeomorphism f which induces the composition operator u ↦ u ℴ f from W 1 X to W 1 X is necessarily a q-quasiconformal mapping. We also give some new results for the sufficiency of this condition for the composition operator.