Displaying similar documents to “A 'hidden' characterization of approximatively polyhedral convex sets in Banach spaces”

On Bárány's theorems of Carathéodory and Helly type

Ehrhard Behrends (2000)

Studia Mathematica

Similarity:

The paper begins with a self-contained and short development of Bárány’s theorems of Carathéodory and Helly type in finite-dimensional spaces together with some new variants. In the second half the possible generalizations of these results to arbitrary Banach spaces are investigated. The Carathéodory-Bárány theorem has a counterpart in arbitrary dimensions under suitable uniform compactness or uniform boundedness conditions. The proper generalization of the Helly-Bárány theorem reads...

The cancellation law for inf-convolution of convex functions

Dariusz Zagrodny (1994)

Studia Mathematica

Similarity:

Conditions under which the inf-convolution of f and g f g ( x ) : = i n f y + z = x ( f ( y ) + g ( z ) ) has the cancellation property (i.e. f □ h ≡ g □ h implies f ≡ g) are treated in a convex analysis framework. In particular, we show that the set of strictly convex lower semicontinuous functions f : X + on a reflexive Banach space such that l i m x f ( x ) / x = constitutes a semigroup, with inf-convolution as multiplication, which can be embedded in the group of its quotients.

Convex-compact sets and Banach discs

I. Monterde, Vicente Montesinos (2009)

Czechoslovak Mathematical Journal

Similarity:

Every relatively convex-compact convex subset of a locally convex space is contained in a Banach disc. Moreover, an upper bound for the class of sets which are contained in a Banach disc is presented. If the topological dual E ' of a locally convex space E is the σ ( E ' , E ) -closure of the union of countably many σ ( E ' , E ) -relatively countably compacts sets, then every weakly (relatively) convex-compact set is weakly (relatively) compact.

Paraconvex functions and paraconvex sets

Huynh Van Ngai, Jean-Paul Penot (2008)

Studia Mathematica

Similarity:

We study a class of functions which contains both convex functions and differentiable functions whose derivatives are locally Lipschitzian or Hölderian. This class is a subclass of the class of approximately convex functions. It enjoys refined properties. We also introduce a class of sets whose associated distance functions are of that type. We discuss the properties of the metric projections on such sets under some assumptions on the geometry of the Banach spaces in which they are embedded....