Displaying similar documents to “On positive embeddings of C(K) spaces”

On embeddings of C₀(K) spaces into C₀(L,X) spaces

Leandro Candido (2016)

Studia Mathematica

Similarity:

For a locally compact Hausdorff space K and a Banach space X let C₀(K, X) denote the space of all continuous functions f:K → X which vanish at infinity, equipped with the supremum norm. If X is the scalar field, we denote C₀(K, X) simply by C₀(K). We prove that for locally compact Hausdorff spaces K and L and for a Banach space X containing no copy of c₀, if there is an isomorphic embedding of C₀(K) into C₀(L,X), then either K is finite or |K| ≤ |L|. As a consequence, if there is an...

Uncomplemented copies of C(K) inside C(K).

Francisco Arranz (1996)

Extracta Mathematicae

Similarity:

Throughout this note, whenever K is a compact space C(K) denotes the Banach space of continuous functions on K endowed with the sup norm. Though it is well known that every infinite dimensional Banach space contains uncomplemented subspaces, things may be different when only C(K) spaces are considered. For instance, every copy of l∞ = C(BN) is complemented wherever it is found. In [5] Pelzcynski found: Theorem 1. Let K be a compact metric space. If a separable Banach space X contains...

Isomorphisms of AC(σ) spaces

Ian Doust, Michael Leinert (2015)

Studia Mathematica

Similarity:

Analogues of the classical Banach-Stone theorem for spaces of continuous functions are studied in the context of the spaces of absolutely continuous functions introduced by Ashton and Doust. We show that if AC(σ₁) is algebra isomorphic to AC(σ₂) then σ₁ is homeomorphic to σ₂. The converse however is false. In a positive direction we show that the converse implication does hold if the sets σ₁ and σ₂ are confined to a restricted collection of compact sets, such as the set of all simple...

A note on weakly Lindelöf determined Banach spaces

A. González, Vicente Montesinos (2009)

Czechoslovak Mathematical Journal

Similarity:

We prove that weakly Lindelöf determined Banach spaces are characterized by the existence of a ``full'' projectional generator. Some other results pertaining to this class of Banach spaces are given.