A Remark on Quadratic Spaces over Noncommutative Semilocal Rings.
Bernhard Keller (1988)
Mathematische Zeitschrift
Similarity:
Bernhard Keller (1988)
Mathematische Zeitschrift
Similarity:
R. Chaudhuri (1976)
Matematički Vesnik
Similarity:
Otto Gerstner (1975)
Publications mathématiques et informatique de Rennes
Similarity:
Keune, Frans (1996)
Documenta Mathematica
Similarity:
Michał Kowalski (1976)
Annales Polonici Mathematici
Similarity:
Lăcrimioara Iancu, Maria S. Pop (2000)
Discussiones Mathematicae - General Algebra and Applications
Similarity:
We give a construction for (m,n)-rings of quotients of a semicommutative (m,n)-ring, which generalizes the ones given by Crombez and Timm and by Paunić for the commutative case. We also study various constructions involving reduced rings and rings of quotients and give some functorial interpretations.
Bell, Howard E., Klein, Abraham A. (2010)
Beiträge zur Algebra und Geometrie
Similarity:
O. A. S. Karamzadeh, M. Motamedi, S. M. Shahrtash (2009)
Fundamenta Mathematicae
Similarity:
Roger Yue Chi Ming (1989)
Publications de l'Institut Mathématique
Similarity:
M. Marshall, L. Walter (1990)
Mathematische Zeitschrift
Similarity:
J. C. Robson (1973)
Publications du Département de mathématiques (Lyon)
Similarity:
Kazimierz Szymiczek (1987)
Colloquium Mathematicae
Similarity:
Seth WARNER (1994)
Forum mathematicum
Similarity:
Christan U. Jensen, Soren Jondrup (1973)
Mathematische Zeitschrift
Similarity:
K.M. RANGASWAMY (1970/71)
Mathematische Annalen
Similarity:
Marcus Tressl (2007)
Fundamenta Mathematicae
Similarity:
A super real closed ring is a commutative ring equipped with the operation of all continuous functions ℝⁿ → ℝ. Examples are rings of continuous functions and super real fields attached to z-prime ideals in the sense of Dales and Woodin. We prove that super real closed rings which are fields are an elementary class of real closed fields which carry all o-minimal expansions of the real field in a natural way. The main part of the paper develops the commutative algebra of super real closed...