Chainable continua and homeomorphisms of the plane onto itself
Mirosław Sobolewski (1984)
Fundamenta Mathematicae
Similarity:
Mirosław Sobolewski (1984)
Fundamenta Mathematicae
Similarity:
Charles L. Hagopian, Janusz R. Prajs (2005)
Fundamenta Mathematicae
Similarity:
We define an unusual continuum M with the fixed-point property in the plane ℝ². There is a disk D in ℝ² such that M ∩ D is an arc and M ∪ D does not have the fixed-point property. This example answers a question of R. H. Bing. The continuum M is a countable union of arcs.
D. Daniel, C. Islas, R. Leonel, E. D. Tymchatyn (2015)
Colloquium Mathematicae
Similarity:
We revisit an old question of Knaster by demonstrating that each non-degenerate plane hereditarily unicoherent continuum X contains a proper, non-degenerate subcontinuum which does not separate X.
Charatonik, Janusz J., Pyrih, Pavel (2000)
Mathematica Pannonica
Similarity:
George W. Henderson (1971)
Colloquium Mathematicae
Similarity:
J. Krasinkiewicz (1974)
Fundamenta Mathematicae
Similarity:
H. Cook (1967)
Fundamenta Mathematicae
Similarity:
R. Moore (1929)
Fundamenta Mathematicae
Similarity:
L. C. Hoehn (2011)
Fundamenta Mathematicae
Similarity:
A plane continuum is constructed which has span zero but is not chainable.
Acosta, Gerardo, Charatonik, Janusz J. (2004)
Mathematica Pannonica
Similarity:
James Davis, W. Ingram (1988)
Fundamenta Mathematicae
Similarity:
Charatonik, Janusz J. (2003)
International Journal of Mathematics and Mathematical Sciences
Similarity:
H. Cook (1974)
Fundamenta Mathematicae
Similarity:
H. Cook (1970)
Fundamenta Mathematicae
Similarity: