Displaying similar documents to “The Banach-Tarski paradox for the hyperbolic plane (II)”

Some Connections between Minkowski and Hyperbolic Planes

Jarosław Kosiorek, Andrzej Matraś (2004)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

The model of the Minkowski plane in the projective plane with a fixed conic sheds a new light on the connection between the Minkowski and hyperbolic geometries. The construction of the Minkowski plane in a hyperbolic plane over a Euclidean field is given. It is also proved that the geometry in an orthogonal bundle of circles is hyperbolic in a natural way.

The theorems of Stewart and Steiner in the Poincaré disc model of hyperbolic geometry

Oğuzhan Demirel (2009)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In [Comput. Math. Appl. 41 (2001), 135--147], A. A. Ungar employs the Möbius gyrovector spaces for the introduction of the hyperbolic trigonometry. This Ungar's work plays a major role in translating some theorems from Euclidean geometry to corresponding theorems in hyperbolic geometry. In this paper we explore the theorems of Stewart and Steiner in the Poincaré disc model of hyperbolic geometry.

An existence theorem for an hyperbolic differential inclusion in Banach spaces

Mouffak Benchohra, Sotiris K. Ntouyas (2002)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

In this paper, we investigate the existence of solutions on unbounded domain to a hyperbolic differential inclusion in Banach spaces. We shall rely on a fixed point theorem due to Ma which is an extension to multivalued between locally convex topological spaces of Schaefer's theorem.

Boundaries of right-angled hyperbolic buildings

Jan Dymara, Damian Osajda (2007)

Fundamenta Mathematicae

Similarity:

We prove that the boundary of a right-angled hyperbolic building is a universal Menger space. As a consequence, the 3-dimensional universal Menger space is the boundary of some Gromov-hyperbolic group.