On a diophantine problem with one prime, two squares of primes and s powers of two
Alessandro Languasco, Valentina Settimi (2012)
Acta Arithmetica
Similarity:
Alessandro Languasco, Valentina Settimi (2012)
Acta Arithmetica
Similarity:
Pingzhi Yuan, Yuan Li (2009)
Acta Arithmetica
Similarity:
Susil Kumar Jena (2014)
Bulletin of the Polish Academy of Sciences. Mathematics
Similarity:
The Diophantine equation A² + nB⁴ = C³ has infinitely many integral solutions A, B, C for any fixed integer n. The case n = 0 is trivial. By using a new polynomial identity we generate these solutions, and then give conditions when the solutions are pairwise co-prime.
Ladislav Beran (1987)
Acta Universitatis Carolinae. Mathematica et Physica
Similarity:
Muriefah, Fadwa S.Abu, Bugeaud, Yann (2006)
Revista Colombiana de Matemáticas
Similarity:
Grytczuk, Aleksander (2006)
Annales Mathematicae et Informaticae
Similarity:
Ernst, Bruno (1996)
General Mathematics
Similarity:
W. J. Ellison (1970-1971)
Séminaire de théorie des nombres de Bordeaux
Similarity:
Alan Filipin (2009)
Acta Arithmetica
Similarity:
S. Akhtari, A. Togbé, P. G. Walsh (2009)
Acta Arithmetica
Similarity:
Florian Luca, P. G. Walsh (2001)
Acta Arithmetica
Similarity:
H. Kleiman (1976)
Journal für die reine und angewandte Mathematik
Similarity:
Utz, W.R. (1985)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Yang Hai, P. G. Walsh (2010)
Acta Arithmetica
Similarity:
Pingzhi Yuan, Jiagui Luo (2010)
Acta Arithmetica
Similarity:
Umberto Zannier (2003)
Acta Arithmetica
Similarity: