The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On the Kunen-Shelah properties in Banach spaces”

More lr saturated L∞ spaces

Gasparis, I., Papadiamantis, M. K., Zisimopoulou, D. Z. (2010)

Serdica Mathematical Journal

Similarity:

2000 Mathematics Subject Classification: 05D10, 46B03. Given r ∈ (1, ∞), we construct a new L∞ separable Banach space which is lr saturated.

An amalgamation of the Banach spaces associated with James and Schreier, Part I: Banach-space structure

Alistair Bird, Niels Jakob Laustsen (2010)

Banach Center Publications

Similarity:

We create a new family of Banach spaces, the James-Schreier spaces, by amalgamating two important classical Banach spaces: James' quasi-reflexive Banach space on the one hand and Schreier's Banach space giving a counterexample to the Banach-Saks property on the other. We then investigate the properties of these James-Schreier spaces, paying particular attention to how key properties of their 'ancestors' (that is, the James space and the Schreier space) are expressed in them. Our main...

Constructing non-compact operators into c₀

Iryna Banakh, Taras Banakh (2010)

Studia Mathematica

Similarity:

We prove that for each dense non-compact linear operator S: X → Y between Banach spaces there is a linear operator T: Y → c₀ such that the operator TS: X → c₀ is not compact. This generalizes the Josefson-Nissenzweig Theorem.

Regulated functions with values in Banach space

Dana Fraňková (2019)

Mathematica Bohemica

Similarity:

This paper deals with regulated functions having values in a Banach space. In particular, families of equiregulated functions are considered and criteria for relative compactness in the space of regulated functions are given.

Domination by positive Banach-Saks operators

Julio Flores, César Ruiz (2006)

Studia Mathematica

Similarity:

Given a positive Banach-Saks operator T between two Banach lattices E and F, we give sufficient conditions on E and F in order to ensure that every positive operator dominated by T is Banach-Saks. A counterexample is also given when these conditions are dropped. Moreover, we deduce a characterization of the Banach-Saks property in Banach lattices in terms of disjointness.

Quotients of Banach spaces and surjectively universal spaces

Pandelis Dodos (2010)

Studia Mathematica

Similarity:

We characterize those classes 𝓒 of separable Banach spaces for which there exists a separable Banach space Y not containing ℓ₁ and such that every space in the class 𝓒 is a quotient of Y.