The resolution of the diophantine equation x(x+d)...(x+(k-1)d) = by² for fixed d
P. Filakovszky, L. Hajdu (2001)
Acta Arithmetica
Similarity:
P. Filakovszky, L. Hajdu (2001)
Acta Arithmetica
Similarity:
Pingzhi Yuan, Jiagui Luo (2010)
Acta Arithmetica
Similarity:
P. Hubert, A. Messaoudi (2006)
Acta Arithmetica
Similarity:
V. Losert (2005)
Acta Arithmetica
Similarity:
Ernst, Bruno (1996)
General Mathematics
Similarity:
Alan Filipin (2009)
Acta Arithmetica
Similarity:
H. Kleiman (1976)
Journal für die reine und angewandte Mathematik
Similarity:
Yang Hai, P. G. Walsh (2010)
Acta Arithmetica
Similarity:
W. J. Ellison (1970-1971)
Séminaire de théorie des nombres de Bordeaux
Similarity:
Shin-ichi Katayama, Claude Levesque (2003)
Acta Arithmetica
Similarity:
Pingzhi Yuan (2004)
Acta Arithmetica
Similarity:
Jianhua Chen (2001)
Acta Arithmetica
Similarity:
Susil Kumar Jena (2014)
Bulletin of the Polish Academy of Sciences. Mathematics
Similarity:
The Diophantine equation A² + nB⁴ = C³ has infinitely many integral solutions A, B, C for any fixed integer n. The case n = 0 is trivial. By using a new polynomial identity we generate these solutions, and then give conditions when the solutions are pairwise co-prime.
Makoto Nagata (2003)
Acta Arithmetica
Similarity:
Florian Luca, T. N. Shorey (2008)
Acta Arithmetica
Similarity:
Umberto Zannier (2003)
Acta Arithmetica
Similarity:
Muriefah, Fadwa S.Abu, Bugeaud, Yann (2006)
Revista Colombiana de Matemáticas
Similarity:
S. Akhtari, A. Togbé, P. G. Walsh (2009)
Acta Arithmetica
Similarity:
Pingzhi Yuan, Yuan Li (2009)
Acta Arithmetica
Similarity:
Xiaolei Dong, W. C. Shiu, C. I. Chu, Zhenfu Cao (2007)
Acta Arithmetica
Similarity: