Vector bundles over Dold manifolds
R. E. Stong (2001)
Fundamenta Mathematicae
Similarity:
This paper determines the possible Stiefel-Whitney classes for vector bundles over Dold manifolds.
R. E. Stong (2001)
Fundamenta Mathematicae
Similarity:
This paper determines the possible Stiefel-Whitney classes for vector bundles over Dold manifolds.
C.B. Hugehs, L. Taylor, E. Williams (1991)
Forum mathematicum
Similarity:
Adgam Yakhievich Sultanov (2016)
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
Similarity:
The descriptions of Weil bundles, lifts of functions and vector fields are given. Actions of the automorphisms group of the Whitney sum of algebras of dual numbers on a Weil bundle of the first order are defined.
Kyung Whan Kwun (1984)
Colloquium Mathematicae
Similarity:
Włodzimierz M. Mikulski (1988)
Časopis pro pěstování matematiky
Similarity:
Cabras, Antonella, Kolář, Ivan, Modugno, Marco
Similarity:
Summary: [For the entire collection see Zbl 0742.00067.]A general theory of fibre bundles structured by an arbitrary differential-geometric category is presented. It is proved that the structured bundles of finite type coincide with the classical associated bundles.
Andrei Verona (1979/80)
Manuscripta mathematica
Similarity:
Maria H. Paula Leite Mello (1986/87)
Manuscripta mathematica
Similarity:
L’udovít Balko (2021)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
We compute the height of the third Stiefel--Whitney characteristic class of the canonical bundles over some infinite classes of Grassmann manifolds of five dimensional vector subspaces of real vector spaces.